Macrosegregation in a multicomponent low alloy steel

Macrosegregation theory is extended to predict the formation of channel-type segregation for multicomponent systems. Specifically, calculations are carried out for 0.7 pct C steel, by considering heat, mass and momentum transport in the mushy zone. In the model used for calculations the momentum transport equation and the energy equation were solved simultaneously. It is confirmed, by comparing calculated results with experimental results, that this model successfully predicts the occurrence of channel-type segregation. This analysis is also more rigorous than previous works on macrosegregation because previous analyses were done by solving for convection in the mushy zone with an “uncoupled” temperature field. Using the model, the effects of adjusting the compositions of silicon and molybdenum in steel were quantitatively evaluated in order to show how channel-type segregates can be avoided by adjusting alloy composition. A method of optimizing composition to minimize segregation is presented. It is recommended that this methodology be applied to alloy design so that ingots of alloys amenable to commercial practice can be obtained readily with a minimum amount of “trial-and-error” development work and expense.