The Unusual Initial Mass Function of the Arches Cluster

As a young massive cluster in the central molecular zone, the Arches cluster is a valuable probe of the stellar initial mass function (IMF) in the extreme Galactic center environment. We use multi-epoch Hubble Space Telescope observations to obtain high-precision proper-motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to ∼1.8 M⊙ between cluster radii of 0.25 and 3.0 pc. We achieve a cluster sample with just ∼6% field contamination, a significant improvement over photometrically selected samples that are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of five cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a one-segment power law that is significantly top-heavy: α = 1.80 ± 0.05 (stat) ± 0.06 (sys), where dN/dm ∝ m−α, though we cannot discount a two-segment power-law model with a high-mass slope only slightly shallower than local star-forming regions but with a break at . In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic center.

[1]  Awad Aubad,et al.  Towards a framework building for social systems modelling , 2020 .

[2]  N. Neumayer,et al.  GALACTICNUCLEUS: A high angular-resolution JHKs imaging survey of the Galactic centre , 2017, Astronomy & Astrophysics.

[3]  Jason Kalirai,et al.  Scientific discovery with the James Webb Space Telescope , 2018, Contemporary Physics.

[4]  The Arches cluster revisited , 2018, Astronomy & Astrophysics.

[5]  J. Clark,et al.  The Arches cluster revisited , 2018, Astronomy & Astrophysics.

[6]  Daniel Thomas,et al.  SDSS-IV MaNGA: the spatially resolved stellar initial mass function in ∼400 early-type galaxies , 2018, 1803.08515.

[7]  Jessica R. Lu,et al.  The Optical/Near-infrared Extinction Law in Highly Reddened Regions , 2018, 1801.08574.

[8]  A. Burgasser,et al.  The HST Large Programme on ω Centauri. II. Internal Kinematics , 2018, 1801.01504.

[9]  R. Klein,et al.  Formation of stellar clusters in magnetized, filamentary infrared dark clouds , 2017, 1708.06770.

[10]  S. Vaughan,et al.  Radial measurements of IMF-sensitive absorption features in two massive ETGs , 2016, 1612.00364.

[11]  S. Goodwin,et al.  The early dynamical evolution of star clusters near the Galactic Centre , 2018, 1804.08869.

[12]  P. Hennebelle,et al.  Stellar mass spectrum within massive collapsing clumps I. Influence of the initial conditions , 2017, 1711.00316.

[13]  Kelly E. Lockhart,et al.  A Slowly Precessing Disk in the Nucleus of M31 as the Feeding Mechanism for a Central Starburst , 2017, 1710.01394.

[14]  R. Klein,et al.  The effects of magnetic fields and protostellar feedback on low-mass cluster formation , 2017, 1709.01277.

[15]  M. Cappellari,et al.  SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies , 2017, 1703.04894.

[16]  E. Grebel,et al.  A High-resolution Multiband Survey of Westerlund 2 with the Hubble Space Telescope. III. The Present-day Stellar Mass Function , 2017, 1701.07302.

[17]  C. Conroy,et al.  The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. IV. A Super-Salpeter IMF in the Center of NGC 1407 from Non-parametric Models , 2016, 1612.00013.

[18]  N. Thatte,et al.  Radial gradients in initial mass function sensitive absorption features in the Coma brightest cluster galaxies , 2016, 1611.01095.

[19]  Daniel J. Price,et al.  Does turbulence determine the initial mass function , 2016, 1610.07619.

[20]  M. Meyer,et al.  Very low-mass stellar content of the young supermassive Galactic star cluster Westerlund 1 , 2016, 1602.05918.

[21]  C. Conroy,et al.  The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints , 2016, 1612.00065.

[22]  C. Conroy,et al.  The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients , 2016, 1611.09859.

[23]  L. Girardi Red Clump Stars , 2016 .

[24]  R. Klessen,et al.  The IMF as a function of supersonic turbulence , 2016, 1608.01306.

[25]  R. Blum,et al.  Extinction law in the range 0.4 - 4.8 μm and the 8620 Å DIB towards the stellar cluster Westerlund 1 , 2016, 1607.04639.

[26]  L. Galbany,et al.  IMF shape constraints from stellar populations and dynamics from CALIFA , 2016, 1606.07448.

[27]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[28]  R. Klein,et al.  What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations , 2016, 1603.04557.

[29]  H. Rix,et al.  THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY , 2016, 1602.03928.

[30]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[31]  E. Grebel,et al.  Hubble Tarantula Treasury Project – IV. The extinction law , 2015, 1510.08436.

[32]  P. Hopkins,et al.  The necessity of feedback physics in setting the peak of the initial mass function , 2015, 1510.05040.

[33]  Jessica R. Lu,et al.  THE ARCHES CLUSTER: EXTENDED STRUCTURE AND TIDAL RADIUS , 2015, 1509.04716.

[34]  A. Ginsburg,et al.  Dense gas in the Galactic central molecular zone is warm and heated by turbulence , 2015, 1509.01583.

[35]  Jessica R. Lu,et al.  RADIAL TRENDS IN IMF-SENSITIVE ABSORPTION FEATURES IN TWO EARLY-TYPE GALAXIES: EVIDENCE FOR ABUNDANCE-DRIVEN GRADIENTS , 2015, 1506.07880.

[36]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[37]  N. Thatte,et al.  The initial mass functions of M31 and M32 through far red stellar absorption features , 2015, 1506.02654.

[38]  L. Hillenbrand,et al.  EMPIRICAL ISOCHRONES FOR LOW MASS STARS IN NEARBY YOUNG ASSOCIATIONS , 2015, 1505.06518.

[39]  J. Borissova,et al.  Atlas of CMFGEN Models for OB Massive Stars , 2015 .

[40]  R. Smith,et al.  The difficult early stages of embedded star clusters and the importance of the pre-gas expulsion virial ratio , 2015, 1504.02474.

[41]  Benjamin D. Johnson,et al.  THE HIGH-MASS STELLAR INITIAL MASS FUNCTION IN M31 CLUSTERS , 2015, 1502.06621.

[42]  Jessica R. Lu,et al.  Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters , 2015, 1502.03681.

[43]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - II. Quantitative evaluation on ESO-VLT/X-Shooterspectra , 2015, 1501.07265.

[44]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - I. Method and application to ESO instruments , 2015, 1501.07239.

[45]  J. Kruijssen,et al.  The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline , 2014, 1412.0664.

[46]  Sungsoo S. Kim,et al.  Low-end mass function of the arches cluster , 2014, 1411.3458.

[47]  J. Falc'on-Barroso,et al.  Radial variations in the stellar initial mass function of early-type galaxies , 2014, 1404.6533.

[48]  P. Hennebelle,et al.  VARIATIONS OF THE STELLAR INITIAL MASS FUNCTION IN THE PROGENITORS OF MASSIVE EARLY-TYPE GALAXIES AND IN EXTREME STARBURST ENVIRONMENTS , 2014, 1409.8466.

[49]  R. Klessen,et al.  MODELING JET AND OUTFLOW FEEDBACK DURING STAR CLUSTER FORMATION , 2014, 1406.3625.

[50]  K. Stassun,et al.  Empirical Tests of Pre-Main-Sequence Stellar Evolution Models with Eclipsing Binaries , 2014, 1406.3788.

[51]  W. Kausch,et al.  Skycorr: A general tool for spectroscopic sky subtraction , 2014, 1405.3679.

[52]  A. Stolte,et al.  Isolated massive stars in the Galactic center: The dynamic contribution from the Arches and Quintuplet star clusters , 2014, 1403.2047.

[53]  Mark R. Krumholz,et al.  The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function , 2014, 1402.0867.

[54]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[55]  R. Klein,et al.  Star cluster formation in turbulent, magnetized dense clumps with radiative and outflow feedback , 2014, 1401.6096.

[56]  L. Koopmans,et al.  The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices , 2013, 1305.2873.

[57]  S. D. Mink,et al.  AGES OF YOUNG STAR CLUSTERS, MASSIVE BLUE STRAGGLERS, AND THE UPPER MASS LIMIT OF STARS: ANALYZING AGE-DEPENDENT STELLAR MASS FUNCTIONS , 2013, 1312.0607.

[58]  F. Martins,et al.  A comparison of evolutionary tracks for single Galactic massive stars , 2013, 1310.7218.

[59]  S. Longmore,et al.  Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue , 2013, 1309.0505.

[60]  O. Gerhard,et al.  Mapping the three-dimensional density of the galactic bulge with VVV red clump stars , 2013, 1308.0593.

[61]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[62]  G. Graves,et al.  DYNAMICAL VERSUS STELLAR MASSES IN COMPACT EARLY-TYPE GALAXIES: FURTHER EVIDENCE FOR SYSTEMATIC VARIATION IN THE STELLAR INITIAL MASS FUNCTION , 2013, 1306.2316.

[63]  H. Baumgardt,et al.  The evolution of the global stellar mass function of star clusters: an analytic description , 2013, 1305.2652.

[64]  R. D. Carvalho,et al.  SPIDER VIII - constraints on the stellar initial mass function of early-type galaxies from a variety of spectral features , 2013, 1305.2273.

[65]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[66]  Jessica R. Lu,et al.  STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION , 2013, 1301.0540.

[67]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[68]  W. Brandner,et al.  The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function , 2012, 1212.3355.

[69]  M. Bessell,et al.  THE STARBURST CLUSTER WESTERLUND 1: THE INITIAL MASS FUNCTION AND MASS SEGREGATION , 2012, 1211.5832.

[70]  R. Klein,et al.  THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK , 2012, 1211.3467.

[71]  D. Narayanan,et al.  The cosmic evolution of the IMF under the Jeans conjecture with implications for massive galaxies , 2012, 1210.6037.

[72]  P. Hopkins Variations in the stellar CMF and IMF: from bottom to top , 2012, 1204.2835.

[73]  K. Alatalo,et al.  The Atlas3D project - XX. Mass-size and Mass-sigma projections of the Virial Plane of early-type galaxies: variation of morphology, kinematics, mass-to-light ratio and stellar initial mass function , 2012 .

[74]  Pieter van Dokkum,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.

[75]  D. Hillier,et al.  Properties of Galactic early-type O-supergiants - A combined FUV-UV and optical analysis , 2012, 1205.3075.

[76]  R. Klein,et al.  RADIATION-HYDRODYNAMIC SIMULATIONS OF THE FORMATION OF ORION-LIKE STAR CLUSTERS. II. THE INITIAL MASS FUNCTION FROM WINDS, TURBULENCE, AND RADIATION , 2012, 1203.2620.

[77]  R. Davies,et al.  Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.

[78]  P. Hopkins The Stellar IMF, Core Mass Function, & The Last-Crossing Distribution , 2012, 1201.4387.

[79]  M. Bessell,et al.  DISTANCE AND THE INITIAL MASS FUNCTION OF YOUNG OPEN CLUSTERS IN THE η CARINA NEBULA: Tr 14 AND Tr 16 , 2012, 1201.0623.

[80]  Jessica R. Lu,et al.  PROPER MOTIONS OF THE ARCHES CLUSTER WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS: THE FIRST KINEMATIC MASS MEASUREMENT OF THE ARCHES , 2011, 1112.5458.

[81]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[82]  P. Cox,et al.  THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK AT z = 2.3 , 2011, 1110.2780.

[83]  M. Krumholz ON THE ORIGIN OF STELLAR MASSES , 2011, 1109.1564.

[84]  J. Puls,et al.  L-band spectroscopy of Galactic OB-stars , 2011, 1108.5752.

[85]  W. Brandner,et al.  The present-day mass function of the Quintuplet cluster based on proper motion membership , 2011, 1108.4331.

[86]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[87]  R. Teyssier,et al.  Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores , 2011, 1101.1574.

[88]  Heidelberg,et al.  Mass segregation and elongation of the starburst cluster Westerlund 1 , 2010, 1011.5223.

[89]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[90]  W. Thi,et al.  Extreme cosmic ray dominated regions: a new paradigm for high star formation density events in the Universe , 2010, 1009.2496.

[91]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[92]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[93]  Cambridge,et al.  A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.

[94]  A. Stolte,et al.  Reconstructing the Arches I: Constraining the Initial Conditions , 2009, 0911.3058.

[95]  J. Kruijssen The evolution of the stellar mass function in star clusters , 2009, 0910.4579.

[96]  Pasadena,et al.  HIGH ANGULAR RESOLUTION INTEGRAL-FIELD SPECTROSCOPY OF THE GALAXY'S NUCLEAR CLUSTER: A MISSING STELLAR CUSP? , 2009, 0908.0311.

[97]  E. Grebel,et al.  ON THE ORIGIN OF MASS SEGREGATION IN NGC 3603 , 2009, Proceedings of the International Astronomical Union.

[98]  R. Klein,et al.  THE EFFECTS OF RADIATIVE TRANSFER ON LOW-MASS STAR FORMATION , 2009, 0904.2004.

[99]  J. Melnick,et al.  The massive star initial mass function of the Arches cluster , 2009, 0903.2222.

[100]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM , 2009, 0902.3095.

[101]  M. Bate The importance of radiative feedback for the stellar initial mass function , 2008, 0811.1035.

[102]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[103]  I. A. Bonnell,et al.  Star Formation Around Supermassive Black Holes , 2008, Science.

[104]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GLOBULAR CLUSTERS. V. GENERATING A COMPREHENSIVE STAR CATALOG FOR EACH CLUSTER , 2008 .

[105]  R. Genzel,et al.  The most massive stars in the Arches cluster , 2007, 0711.0657.

[106]  Jessica R. Lu,et al.  The Proper Motion of the Arches Cluster with Keck Laser-Guide Star Adaptive Optics , 2007, 0706.4133.

[107]  F. Eisenhauer,et al.  The Initial Mass Function of the Massive Star-forming Region NGC 3603 from Near-Infrared Adaptive Optics Observations , 2007, 0710.2882.

[108]  Jongsoo Kim,et al.  The origin of the Arches stellar cluster mass function , 2007, 0706.0950.

[109]  U. L. Laguna,et al.  A detailed study of the enigmatic cluster M82F , 2007, 0706.0543.

[110]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[111]  R.I.Davies A method to remove residual OH emission from near infrared spectra , 2006, astro-ph/0612257.

[112]  R. Kudritzki,et al.  The Arches Cluster Mass Function , 2006, astro-ph/0611377.

[113]  R. Klessen,et al.  The stellar mass spectrum in warm and dusty gas: deviations from Salpeter in the Galactic centre and in circumnuclear starburst regions , 2006, astro-ph/0610557.

[114]  P. Kroupa,et al.  A highly abnormal massive star mass function in the Orion Nebula cluster and the dynamical decay of trapezium systems , 2006, astro-ph/0610230.

[115]  Gas expulsion and the destruction of massive young clusters , 2006, astro-ph/0609477.

[116]  James Lyke,et al.  OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.

[117]  C. Clarke,et al.  The Jeans mass and the origin of the knee in the IMF , 2006, astro-ph/0603444.

[118]  N. Bastian,et al.  Evidence for the Strong Effect of Gas Removal on the Internal Dynamics of Young Stellar Clusters , 2006, astro-ph/0602465.

[119]  Jay Anderson,et al.  PSFs, Photometry, and Astronomy for the ACS/WFC , 2006 .

[120]  C. Maraston,et al.  Dynamical mass estimates for two luminous star clusters in galactic merger remnants , 2005, astro-ph/0511033.

[121]  David Le Mignant,et al.  Adaptive optics developments at Keck Observatory , 2006, SPIE Astronomical Telescopes + Instrumentation.

[122]  Wolfgang Brandner,et al.  The Arches Cluster: Evidence for a Truncated Mass Function? , 2005, astro-ph/0506575.

[123]  R. Larson Thermal physics, cloud geometry and the stellar initial mass function , 2005 .

[124]  F. Martins,et al.  A new calibration of stellar parameters of Galactic O stars , 2005, astro-ph/0503346.

[125]  G. Chabrier The Initial Mass Function: From Salpeter 1955 to 2005 , 2004, astro-ph/0409465.

[126]  W. Vacca,et al.  Mass Segregation and the Initial Mass Function of Super Star Cluster M82-F , 2004, astro-ph/0411256.

[127]  D. Hunter,et al.  Dynamical Mass Estimates for Five Young Massive Stellar Clusters , 2004, astro-ph/0407373.

[128]  R. Kudritzki,et al.  Metallicity in the Galactic Center: The Arches Cluster , 2004, astro-ph/0407188.

[129]  Alfred Krabbe,et al.  Data reduction pipeline for OSIRIS, the new NIR diffraction-limited imaging field spectrograph for the Keck adaptive optics system , 2002, SPIE Astronomical Telescopes + Instrumentation.

[130]  Eugene Serabyn,et al.  Massive Stars in the Arches Cluster , 2002, astro-ph/0208145.

[131]  E. Grebel,et al.  The mass function of the Arches cluster from Gemini adaptive optics data , 2002, astro-ph/0206360.

[132]  L. Hillenbrand,et al.  The Star Formation History and Mass Function of the Double Cluster h and χ Persei , 2002, astro-ph/0205130.

[133]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[134]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[135]  M. Morris,et al.  N-Body Simulations of Compact Young Clusters near the Galactic Center , 2000, astro-ph/0008441.

[136]  E. Serabyn,et al.  Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999 .

[137]  E. Serabyn,et al.  An extraordinary cluster of massive stars near the centre of the Milky Way , 1998, Nature.

[138]  D. John Hillier,et al.  The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .

[139]  Eugene Serabyn,et al.  THE GALACTIC CENTER ENVIRONMENT , 1996 .

[140]  L. Ho,et al.  High-Dispersion Spectroscopy of a Luminous, Young Star Cluster in NGC 1705: Further Evidence for Present-Day Formation of Globular Clusters , 1996, astro-ph/9606031.

[141]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[142]  G. Schwarz Estimating the Dimension of a Model , 1978 .