The Unusual Initial Mass Function of the Arches Cluster
暂无分享,去创建一个
Jessica R. Lu | J. Anderson | Jay Anderson | A. Ghez | J. Lu | M. Morris | F. Najarro | W. Clarkson | M. Hosek | S. Albers | Saundra M Albers
[1] Awad Aubad,et al. Towards a framework building for social systems modelling , 2020 .
[2] N. Neumayer,et al. GALACTICNUCLEUS: A high angular-resolution JHKs imaging survey of the Galactic centre , 2017, Astronomy & Astrophysics.
[3] Jason Kalirai,et al. Scientific discovery with the James Webb Space Telescope , 2018, Contemporary Physics.
[4] The Arches cluster revisited , 2018, Astronomy & Astrophysics.
[5] J. Clark,et al. The Arches cluster revisited , 2018, Astronomy & Astrophysics.
[6] Daniel Thomas,et al. SDSS-IV MaNGA: the spatially resolved stellar initial mass function in ∼400 early-type galaxies , 2018, 1803.08515.
[7] Jessica R. Lu,et al. The Optical/Near-infrared Extinction Law in Highly Reddened Regions , 2018, 1801.08574.
[8] A. Burgasser,et al. The HST Large Programme on ω Centauri. II. Internal Kinematics , 2018, 1801.01504.
[9] R. Klein,et al. Formation of stellar clusters in magnetized, filamentary infrared dark clouds , 2017, 1708.06770.
[10] S. Vaughan,et al. Radial measurements of IMF-sensitive absorption features in two massive ETGs , 2016, 1612.00364.
[11] S. Goodwin,et al. The early dynamical evolution of star clusters near the Galactic Centre , 2018, 1804.08869.
[12] P. Hennebelle,et al. Stellar mass spectrum within massive collapsing clumps I. Influence of the initial conditions , 2017, 1711.00316.
[13] Kelly E. Lockhart,et al. A Slowly Precessing Disk in the Nucleus of M31 as the Feeding Mechanism for a Central Starburst , 2017, 1710.01394.
[14] R. Klein,et al. The effects of magnetic fields and protostellar feedback on low-mass cluster formation , 2017, 1709.01277.
[15] M. Cappellari,et al. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies , 2017, 1703.04894.
[16] E. Grebel,et al. A High-resolution Multiband Survey of Westerlund 2 with the Hubble Space Telescope. III. The Present-day Stellar Mass Function , 2017, 1701.07302.
[17] C. Conroy,et al. The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. IV. A Super-Salpeter IMF in the Center of NGC 1407 from Non-parametric Models , 2016, 1612.00013.
[18] N. Thatte,et al. Radial gradients in initial mass function sensitive absorption features in the Coma brightest cluster galaxies , 2016, 1611.01095.
[19] Daniel J. Price,et al. Does turbulence determine the initial mass function , 2016, 1610.07619.
[20] M. Meyer,et al. Very low-mass stellar content of the young supermassive Galactic star cluster Westerlund 1 , 2016, 1602.05918.
[21] C. Conroy,et al. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints , 2016, 1612.00065.
[22] C. Conroy,et al. The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients , 2016, 1611.09859.
[23] L. Girardi. Red Clump Stars , 2016 .
[24] R. Klessen,et al. The IMF as a function of supersonic turbulence , 2016, 1608.01306.
[25] R. Blum,et al. Extinction law in the range 0.4 - 4.8 μm and the 8620 Å DIB towards the stellar cluster Westerlund 1 , 2016, 1607.04639.
[26] L. Galbany,et al. IMF shape constraints from stellar populations and dynamics from CALIFA , 2016, 1606.07448.
[27] Jieun Choi,et al. MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.
[28] R. Klein,et al. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations , 2016, 1603.04557.
[29] H. Rix,et al. THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY , 2016, 1602.03928.
[30] Aaron Dotter,et al. MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.
[31] E. Grebel,et al. Hubble Tarantula Treasury Project – IV. The extinction law , 2015, 1510.08436.
[32] P. Hopkins,et al. The necessity of feedback physics in setting the peak of the initial mass function , 2015, 1510.05040.
[33] Jessica R. Lu,et al. THE ARCHES CLUSTER: EXTENDED STRUCTURE AND TIDAL RADIUS , 2015, 1509.04716.
[34] A. Ginsburg,et al. Dense gas in the Galactic central molecular zone is warm and heated by turbulence , 2015, 1509.01583.
[35] Jessica R. Lu,et al. RADIAL TRENDS IN IMF-SENSITIVE ABSORPTION FEATURES IN TWO EARLY-TYPE GALAXIES: EVIDENCE FOR ABUNDANCE-DRIVEN GRADIENTS , 2015, 1506.07880.
[36] Dean M. Townsley,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.
[37] N. Thatte,et al. The initial mass functions of M31 and M32 through far red stellar absorption features , 2015, 1506.02654.
[38] L. Hillenbrand,et al. EMPIRICAL ISOCHRONES FOR LOW MASS STARS IN NEARBY YOUNG ASSOCIATIONS , 2015, 1505.06518.
[39] J. Borissova,et al. Atlas of CMFGEN Models for OB Massive Stars , 2015 .
[40] R. Smith,et al. The difficult early stages of embedded star clusters and the importance of the pre-gas expulsion virial ratio , 2015, 1504.02474.
[41] Benjamin D. Johnson,et al. THE HIGH-MASS STELLAR INITIAL MASS FUNCTION IN M31 CLUSTERS , 2015, 1502.06621.
[42] Jessica R. Lu,et al. Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters , 2015, 1502.03681.
[43] W. Kausch,et al. Molecfit: A general tool for telluric absorption correction - II. Quantitative evaluation on ESO-VLT/X-Shooterspectra , 2015, 1501.07265.
[44] W. Kausch,et al. Molecfit: A general tool for telluric absorption correction - I. Method and application to ESO instruments , 2015, 1501.07239.
[45] J. Kruijssen,et al. The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline , 2014, 1412.0664.
[46] Sungsoo S. Kim,et al. Low-end mass function of the arches cluster , 2014, 1411.3458.
[47] J. Falc'on-Barroso,et al. Radial variations in the stellar initial mass function of early-type galaxies , 2014, 1404.6533.
[48] P. Hennebelle,et al. VARIATIONS OF THE STELLAR INITIAL MASS FUNCTION IN THE PROGENITORS OF MASSIVE EARLY-TYPE GALAXIES AND IN EXTREME STARBURST ENVIRONMENTS , 2014, 1409.8466.
[49] R. Klessen,et al. MODELING JET AND OUTFLOW FEEDBACK DURING STAR CLUSTER FORMATION , 2014, 1406.3625.
[50] K. Stassun,et al. Empirical Tests of Pre-Main-Sequence Stellar Evolution Models with Eclipsing Binaries , 2014, 1406.3788.
[51] W. Kausch,et al. Skycorr: A general tool for spectroscopic sky subtraction , 2014, 1405.3679.
[52] A. Stolte,et al. Isolated massive stars in the Galactic center: The dynamic contribution from the Arches and Quintuplet star clusters , 2014, 1403.2047.
[53] Mark R. Krumholz,et al. The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function , 2014, 1402.0867.
[54] A. Merloni,et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.
[55] R. Klein,et al. Star cluster formation in turbulent, magnetized dense clumps with radiative and outflow feedback , 2014, 1401.6096.
[56] L. Koopmans,et al. The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices , 2013, 1305.2873.
[57] S. D. Mink,et al. AGES OF YOUNG STAR CLUSTERS, MASSIVE BLUE STRAGGLERS, AND THE UPPER MASS LIMIT OF STARS: ANALYZING AGE-DEPENDENT STELLAR MASS FUNCTIONS , 2013, 1312.0607.
[58] F. Martins,et al. A comparison of evolutionary tracks for single Galactic massive stars , 2013, 1310.7218.
[59] S. Longmore,et al. Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue , 2013, 1309.0505.
[60] O. Gerhard,et al. Mapping the three-dimensional density of the galactic bulge with VVV red clump stars , 2013, 1308.0593.
[61] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[62] G. Graves,et al. DYNAMICAL VERSUS STELLAR MASSES IN COMPACT EARLY-TYPE GALAXIES: FURTHER EVIDENCE FOR SYSTEMATIC VARIATION IN THE STELLAR INITIAL MASS FUNCTION , 2013, 1306.2316.
[63] H. Baumgardt,et al. The evolution of the global stellar mass function of star clusters: an analytic description , 2013, 1305.2652.
[64] R. D. Carvalho,et al. SPIDER VIII - constraints on the stellar initial mass function of early-type galaxies from a variety of spectral features , 2013, 1305.2273.
[65] Ansgar Reiners,et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.
[66] Jessica R. Lu,et al. STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION , 2013, 1301.0540.
[67] M. H. Montgomery,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.
[68] W. Brandner,et al. The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function , 2012, 1212.3355.
[69] M. Bessell,et al. THE STARBURST CLUSTER WESTERLUND 1: THE INITIAL MASS FUNCTION AND MASS SEGREGATION , 2012, 1211.5832.
[70] R. Klein,et al. THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK , 2012, 1211.3467.
[71] D. Narayanan,et al. The cosmic evolution of the IMF under the Jeans conjecture with implications for massive galaxies , 2012, 1210.6037.
[72] P. Hopkins. Variations in the stellar CMF and IMF: from bottom to top , 2012, 1204.2835.
[73] K. Alatalo,et al. The Atlas3D project - XX. Mass-size and Mass-sigma projections of the Virial Plane of early-type galaxies: variation of morphology, kinematics, mass-to-light ratio and stellar initial mass function , 2012 .
[74] Pieter van Dokkum,et al. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.
[75] D. Hillier,et al. Properties of Galactic early-type O-supergiants - A combined FUV-UV and optical analysis , 2012, 1205.3075.
[76] R. Klein,et al. RADIATION-HYDRODYNAMIC SIMULATIONS OF THE FORMATION OF ORION-LIKE STAR CLUSTERS. II. THE INITIAL MASS FUNCTION FROM WINDS, TURBULENCE, AND RADIATION , 2012, 1203.2620.
[77] R. Davies,et al. Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.
[78] P. Hopkins. The Stellar IMF, Core Mass Function, & The Last-Crossing Distribution , 2012, 1201.4387.
[79] M. Bessell,et al. DISTANCE AND THE INITIAL MASS FUNCTION OF YOUNG OPEN CLUSTERS IN THE η CARINA NEBULA: Tr 14 AND Tr 16 , 2012, 1201.0623.
[80] Jessica R. Lu,et al. PROPER MOTIONS OF THE ARCHES CLUSTER WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS: THE FIRST KINEMATIC MASS MEASUREMENT OF THE ARCHES , 2011, 1112.5458.
[81] N. Mowlavi,et al. Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.
[82] P. Cox,et al. THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK AT z = 2.3 , 2011, 1110.2780.
[83] M. Krumholz. ON THE ORIGIN OF STELLAR MASSES , 2011, 1109.1564.
[84] J. Puls,et al. L-band spectroscopy of Galactic OB-stars , 2011, 1108.5752.
[85] W. Brandner,et al. The present-day mass function of the Quintuplet cluster based on proper motion membership , 2011, 1108.4331.
[86] S. Degl'Innocenti,et al. The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.
[87] R. Teyssier,et al. Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores , 2011, 1101.1574.
[88] Heidelberg,et al. Mass segregation and elongation of the starburst cluster Westerlund 1 , 2010, 1011.5223.
[89] Jeremiah P. Ostriker,et al. THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.
[90] W. Thi,et al. Extreme cosmic ray dominated regions: a new paradigm for high star formation density events in the Universe , 2010, 1009.2496.
[91] Frank Timmes,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.
[92] Simon Portegies Zwart,et al. Young Massive Star Clusters , 2010, 1002.1961.
[93] Cambridge,et al. A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.
[94] A. Stolte,et al. Reconstructing the Arches I: Constraining the Initial Conditions , 2009, 0911.3058.
[95] J. Kruijssen. The evolution of the stellar mass function in star clusters , 2009, 0910.4579.
[96] Pasadena,et al. HIGH ANGULAR RESOLUTION INTEGRAL-FIELD SPECTROSCOPY OF THE GALAXY'S NUCLEAR CLUSTER: A MISSING STELLAR CUSP? , 2009, 0908.0311.
[97] E. Grebel,et al. ON THE ORIGIN OF MASS SEGREGATION IN NGC 3603 , 2009, Proceedings of the International Astronomical Union.
[98] R. Klein,et al. THE EFFECTS OF RADIATIVE TRANSFER ON LOW-MASS STAR FORMATION , 2009, 0904.2004.
[99] J. Melnick,et al. The massive star initial mass function of the Arches cluster , 2009, 0903.2222.
[100] M. Tamura,et al. INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM , 2009, 0902.3095.
[101] M. Bate. The importance of radiative feedback for the stellar initial mass function , 2008, 0811.1035.
[102] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[103] I. A. Bonnell,et al. Star Formation Around Supermassive Black Holes , 2008, Science.
[104] Giampaolo Piotto,et al. THE ACS SURVEY OF GLOBULAR CLUSTERS. V. GENERATING A COMPREHENSIVE STAR CATALOG FOR EACH CLUSTER , 2008 .
[105] R. Genzel,et al. The most massive stars in the Arches cluster , 2007, 0711.0657.
[106] Jessica R. Lu,et al. The Proper Motion of the Arches Cluster with Keck Laser-Guide Star Adaptive Optics , 2007, 0706.4133.
[107] F. Eisenhauer,et al. The Initial Mass Function of the Massive Star-forming Region NGC 3603 from Near-Infrared Adaptive Optics Observations , 2007, 0710.2882.
[108] Jongsoo Kim,et al. The origin of the Arches stellar cluster mass function , 2007, 0706.0950.
[109] U. L. Laguna,et al. A detailed study of the enigmatic cluster M82F , 2007, 0706.0543.
[110] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[111] R.I.Davies. A method to remove residual OH emission from near infrared spectra , 2006, astro-ph/0612257.
[112] R. Kudritzki,et al. The Arches Cluster Mass Function , 2006, astro-ph/0611377.
[113] R. Klessen,et al. The stellar mass spectrum in warm and dusty gas: deviations from Salpeter in the Galactic centre and in circumnuclear starburst regions , 2006, astro-ph/0610557.
[114] P. Kroupa,et al. A highly abnormal massive star mass function in the Orion Nebula cluster and the dynamical decay of trapezium systems , 2006, astro-ph/0610230.
[115] Gas expulsion and the destruction of massive young clusters , 2006, astro-ph/0609477.
[116] James Lyke,et al. OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.
[117] C. Clarke,et al. The Jeans mass and the origin of the knee in the IMF , 2006, astro-ph/0603444.
[118] N. Bastian,et al. Evidence for the Strong Effect of Gas Removal on the Internal Dynamics of Young Stellar Clusters , 2006, astro-ph/0602465.
[119] Jay Anderson,et al. PSFs, Photometry, and Astronomy for the ACS/WFC , 2006 .
[120] C. Maraston,et al. Dynamical mass estimates for two luminous star clusters in galactic merger remnants , 2005, astro-ph/0511033.
[121] David Le Mignant,et al. Adaptive optics developments at Keck Observatory , 2006, SPIE Astronomical Telescopes + Instrumentation.
[122] Wolfgang Brandner,et al. The Arches Cluster: Evidence for a Truncated Mass Function? , 2005, astro-ph/0506575.
[123] R. Larson. Thermal physics, cloud geometry and the stellar initial mass function , 2005 .
[124] F. Martins,et al. A new calibration of stellar parameters of Galactic O stars , 2005, astro-ph/0503346.
[125] G. Chabrier. The Initial Mass Function: From Salpeter 1955 to 2005 , 2004, astro-ph/0409465.
[126] W. Vacca,et al. Mass Segregation and the Initial Mass Function of Super Star Cluster M82-F , 2004, astro-ph/0411256.
[127] D. Hunter,et al. Dynamical Mass Estimates for Five Young Massive Stellar Clusters , 2004, astro-ph/0407373.
[128] R. Kudritzki,et al. Metallicity in the Galactic Center: The Arches Cluster , 2004, astro-ph/0407188.
[129] Alfred Krabbe,et al. Data reduction pipeline for OSIRIS, the new NIR diffraction-limited imaging field spectrograph for the Keck adaptive optics system , 2002, SPIE Astronomical Telescopes + Instrumentation.
[130] Eugene Serabyn,et al. Massive Stars in the Arches Cluster , 2002, astro-ph/0208145.
[131] E. Grebel,et al. The mass function of the Arches cluster from Gemini adaptive optics data , 2002, astro-ph/0206360.
[132] L. Hillenbrand,et al. The Star Formation History and Mass Function of the Double Cluster h and χ Persei , 2002, astro-ph/0205130.
[133] P. Kroupa. The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.
[134] P. Padoan,et al. The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.
[135] M. Morris,et al. N-Body Simulations of Compact Young Clusters near the Galactic Center , 2000, astro-ph/0008441.
[136] E. Serabyn,et al. Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999 .
[137] E. Serabyn,et al. An extraordinary cluster of massive stars near the centre of the Milky Way , 1998, Nature.
[138] D. John Hillier,et al. The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .
[139] Eugene Serabyn,et al. THE GALACTIC CENTER ENVIRONMENT , 1996 .
[140] L. Ho,et al. High-Dispersion Spectroscopy of a Luminous, Young Star Cluster in NGC 1705: Further Evidence for Present-Day Formation of Globular Clusters , 1996, astro-ph/9606031.
[141] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[142] G. Schwarz. Estimating the Dimension of a Model , 1978 .