SU-8 Photolithography and Its Impact on Microfluidics

[1]  Darwin R. Reyes,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[2]  Alan F. Jankowski,et al.  Micro-Fabricated Thin-Film Fuel Cells for Portable Power Requirements , 2002 .

[3]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[4]  Shili Wang,et al.  Electroosmotic pumps and their applications in microfluidic systems , 2009, Microfluidics and nanofluidics.

[5]  M. Matthews,et al.  Prevention of Photoresist Pattern Collapse by Using Liquid Carbon Dioxide , 2001 .

[6]  J. King,et al.  Utilization of critical fluids in processing semiconductors and their related materials , 2003 .

[7]  Ralu Divan,et al.  Optimisation of SU-8 processing parameters for deep X-ray lithography , 2005 .

[8]  Jun Zhang,et al.  Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. , 2004, Lab on a chip.

[9]  C. Henry,et al.  Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. , 2000, Analytical chemistry.

[10]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[11]  Sung-Keun Lee,et al.  3D microfabrication with inclined/rotated UV lithography , 2004 .

[12]  M. Tarlov,et al.  Control of flow direction in microfluidic devices with polyelectrolyte multilayers. , 2000, Analytical chemistry.

[13]  A. Manz,et al.  Lab-on-a-chip: microfluidics in drug discovery , 2006, Nature Reviews Drug Discovery.

[14]  Fan-Gang Tseng,et al.  Application of 3D gray mask for the fabrication of curved SU-8 structures , 2005 .

[15]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[16]  Jeung Sang Go,et al.  In-channel 3-D micromesh structures using maskless multi-angle exposures and their microfilter application , 2004 .

[17]  James V. Crivello,et al.  Complex triarylsulfonium salt photoinitiators. I. The identification, characterization, and syntheses of a new class of triarylsulfonium salt photoinitiators , 1980 .

[18]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[19]  Ren Yang,et al.  A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures , 2005 .

[20]  Guoqing Hu,et al.  Multiscale phenomena in microfluidics and nanofluidics , 2007 .

[21]  J. Eijkel,et al.  Technologies for nanofluidic systems: top-down vs. bottom-up--a review. , 2005, Lab on a chip.

[22]  L. Locascio,et al.  Control of electroosmotic flow in laser‐ablated and chemically modified hot imprinted poly(ethylene terephthalate glycol) microchannels , 2002, Electrophoresis.

[23]  N. F. de Rooij,et al.  Microfluidics meets MEMS , 2003, Proc. IEEE.

[24]  J. Sturm,et al.  Materials Aspects in Micro- and Nanofluidic Systems Applied to Biology , 2006 .

[25]  Shu Yang,et al.  Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures , 2004 .

[26]  W Thormann,et al.  Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. , 2001, Analytical chemistry.

[27]  Yu-Hwa Lo,et al.  UV/ozone modification of poly(dimethylsiloxane) microfluidic channels , 2004 .

[28]  Yoshio Yamashita,et al.  Sub-0.1 µmPatterning with High Aspect Ratio of 5 Achieved by Preventing Pattern Collapse , 1996 .

[29]  Paul Choon Keat Lee,et al.  Characterization of chemically amplified resist for X-ray lithography by Fourier transform infrared spectroscopy , 2006 .

[30]  E. Bassous,et al.  Ink jet printing nozzle arrays etched in silicon , 1977 .

[31]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations , 2004, Electrophoresis.

[32]  Anja Boisen,et al.  Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication , 2004 .

[33]  G M Whitesides,et al.  Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. , 2000, Analytical chemistry.

[34]  Nobufumi Atoda,et al.  Mechanism of Resist Pattern Collapse during Development Process , 1993 .

[35]  Hiroshi Ito,et al.  Chemical amplification resists: History and development within IBM , 1997, IBM J. Res. Dev..

[36]  Oxygen quenching effect in ultra-deep x-ray lithography with SU-8 resist , 2004 .

[37]  H. Craighead Future lab-on-a-chip technologies for interrogating individual molecules , 2006, Nature.

[38]  L. Schwartz,et al.  Theoretical and numerical results for spin coating of viscous liquids , 2004 .

[39]  Michael J. Brett,et al.  High-resolution pattern generation using the epoxy novolak SU-8 2000 resist by electron beam lithography , 2003 .

[40]  Christopher K. Dyer Fuel cells for portable applications , 2002 .

[41]  Stephen J. Haswell,et al.  Materials Matter in Microfluidic Devices , 2006 .

[42]  Hubert Lorenz,et al.  3D microfabrication by combining microstereolithography and thick resist UV lithography , 1999 .

[43]  Jian Zhang,et al.  Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS , 2001 .

[44]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[45]  A. Manz,et al.  Micro total analysis systems. Latest advancements and trends. , 2006, Analytical chemistry.

[46]  Andreas Acrivos,et al.  On the Flow of a Non‐Newtonian Liquid on a Rotating Disk , 1960 .

[48]  Anders Kristensen,et al.  Optofluidic third order distributed feedback dye laser , 2006, physics/0605047.

[49]  Claas Müller,et al.  Chip integrated fuel cell , 2006 .

[50]  Wanjun Wang,et al.  A quantitative study on the adhesion property of cured SU-8 on various metallic surfaces , 2005 .

[51]  Fan-Gang Tseng,et al.  Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head , 2004 .

[52]  R. Kostiainen,et al.  Characterization of SU-8 for electrokinetic microfluidic applications. , 2005, Lab on a chip.

[53]  M. Morris,et al.  Effects of alkaline hydrolysis and dynamic coating on the electroosmotic flow in polymeric microfabricated channels. , 2000, Analytical chemistry.

[54]  Kenji Yamazaki,et al.  Supercritical resist dryer , 2000 .

[55]  Jeffrey D. Morse,et al.  Micro‐fuel cell power sources , 2007 .

[56]  R. Wolters,et al.  Qualitative and quantitative characterization of outgassing from SU-8 , 2009 .

[57]  Nam-Trung Nguyen,et al.  Micromachined polymer electrolyte membrane and direct methanol fuel cells—a review , 2006 .

[58]  Steven J. Holmes,et al.  Negative photoresists for optical lithography , 1997, IBM J. Res. Dev..

[59]  F J Blanco,et al.  Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. , 2005, Lab on a chip.

[60]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[61]  Ali Boukabache,et al.  Low-stress fabrication of 3D polymer free standing structures using lamination of photosensitive films , 2008 .

[62]  Jane M. Shaw,et al.  Micromachining applications of a high resolution ultrathick photoresist , 1995 .

[63]  Min Wang,et al.  Fabrication of high aspect ratio metallic microstructures on ITO glass substrate using reverse-side exposure of SU-8 , 2007 .

[64]  M. Despont,et al.  SU-8: a low-cost negative resist for MEMS , 1997 .

[65]  Yolanda Y. Davidson,et al.  Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. , 2000, Analytical chemistry.

[66]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[67]  H. E. Canavan,et al.  Plastic microfluidic devices modified with polyelectrolyte multilayers , 2000, Analytical chemistry.

[68]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[69]  James V. Crivello,et al.  Diaryliodonium Salts. A New Class of Photoinitiators for Cationic Polymerization , 1977 .

[70]  Albert Folch,et al.  Gray-scale photolithography using microfluidic photomasks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Madou,et al.  A novel method for the fabrication of high-aspect ratio C-MEMS structures , 2005, Journal of Microelectromechanical Systems.

[72]  J. L. Duda,et al.  Diffusion in polymer—solvent systems. I. Reexamination of the free‐volume theory , 1977 .

[73]  H. Andersson,et al.  Microfluidic devices for cellomics: a review , 2003 .

[74]  David Sinton,et al.  Microfluidic fuel cells: A review , 2009 .

[75]  Stéphane Colin,et al.  A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films , 2005 .

[76]  M. Shaw,et al.  Improving the process capability of SU-8 , 2003 .

[77]  T. Dillon,et al.  Fabrication and characterization of three-dimensional silicon tapers. , 2003, Optics express.

[78]  F. Tseng,et al.  Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination , 2002 .

[79]  J. Crivello The discovery and development of onium salt cationic photoinitiators , 1999 .

[80]  M. Tarlov,et al.  Surface characterization of laser-ablated polymers used for microfluidics. , 2002, Analytical chemistry.

[81]  E. Verpoorte Microfluidic chips for clinical and forensic analysis , 2002, Electrophoresis.

[82]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[83]  C. Greiner,et al.  SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography , 2007 .

[84]  Klavs F. Jensen,et al.  Silicon-Based Microchemical Systems: Characteristics and Applications , 2006 .

[85]  B. Weigl,et al.  Lab-on-a-chip for drug development. , 2003, Advanced drug delivery reviews.

[86]  Josef Hormes,et al.  Fabrication of an SU-8 based microfluidic reactor on a PEEK substrate sealed by a ‘flexible semi-solid transfer’(FST) process , 2004 .

[87]  Harald Ditlbacher,et al.  Direct fabrication of micro/nano fluidic channels by electron beam lithography , 2009 .

[88]  Samuel K Sia,et al.  Lab-on-a-chip devices for global health: past studies and future opportunities. , 2007, Lab on a chip.

[89]  Suresh V. Garimella,et al.  Recent advances in microscale pumping technologies: a review and evaluation , 2008 .

[90]  Gwo-Bin Lee,et al.  A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist , 2002 .

[91]  Peter Vettiger,et al.  High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS , 1998 .

[92]  Jens Anders Branebjerg,et al.  Microfluidics-a review , 1993 .

[93]  J. L. Duda,et al.  Diffusion in polymer-solvent systems. II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight , 1977 .

[94]  A. Peele,et al.  Specification of mechanical support structures to prevent SU-8 stiction in high aspect ratio structures , 2005 .

[95]  Bo Li,et al.  Low-stress ultra-thick SU-8 UV photolithography process for MEMS , 2005 .

[96]  Nam-Trung Nguyen,et al.  SU‐8 as a structural material for labs‐on‐chips and microelectromechanical systems , 2007, Electrophoresis.

[97]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[98]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[99]  B. Bilenberg,et al.  High resolution 100kV electron beam lithography in SU-8 , 2006 .

[100]  E. Reznikova,et al.  Deep photo-lithography characterization of SU-8 resist layers , 2005 .

[101]  Xin Zhang,et al.  Flexible fabrication of three-dimensional multi-layered microstructures using a scanning laser system , 2006 .

[102]  Andreas Manz,et al.  Scaling and the design of miniaturized chemical-analysis systems , 2006, Nature.

[103]  F. Watt,et al.  Micromachining using focused high energy ion beams: Deep Ion Beam Lithography , 1999 .

[104]  C. Arnone The laser-plotter: A versatile lithographic tool for integrated optics and microelectronics , 1992 .

[105]  R. Feng,et al.  Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings , 2002 .

[106]  Hasnah Mohd Zaid,et al.  Chemically amplified molecular resists for electron beam lithography , 2006 .

[107]  A. L. Bogdanov,et al.  Use of SU-8 photoresist for very high aspect ratio x-ray lithography , 2000 .

[108]  L. Baraldi,et al.  Electron beam writing of continuous resist profiles for optical applications , 1992 .

[109]  Chong H. Ahn,et al.  A tapered hollow metallic microneedle array using backside exposure of SU-8 , 2004 .

[110]  P. Mitchell Microfluidics—downsizing large-scale biology , 2001, Nature Biotechnology.

[111]  Wanjun Wang,et al.  Using megasonic development of SU-8 to yield ultra-high aspect ratio microstructures with UV lithography , 2004 .

[112]  James V. Crivello,et al.  Photoinitiated cationic polymerization with triarylsulfonium salts , 1979 .

[113]  Wanjun Wang,et al.  Study on the postbaking process and the effects on UV lithography of high aspect ratio SU-8 microstructures , 2004 .

[114]  Hee Chan Kim,et al.  Recent advances in miniaturized microfluidic flow cytometry for clinical use , 2007, Electrophoresis.

[115]  Yong-Kyu Yoon,et al.  Multidirectional UV Lithography for Complex 3-D MEMS Structures , 2006, Journal of Microelectromechanical Systems.

[116]  A. Mata,et al.  Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems , 2005, Biomedical microdevices.

[117]  A. M. Jorgensen,et al.  The effect of soft bake temperature on the polymerization of SU-8 photoresist , 2006 .

[118]  Daniel T Chiu,et al.  Disposable microfluidic devices: fabrication, function, and application. , 2005, BioTechniques.

[119]  Philip Huie,et al.  Building thick photoresist structures from the bottom up , 2003 .

[120]  Toshiyuki Tsuchiya,et al.  Moving mask UV lithography for three-dimensional structuring , 2007 .

[121]  Makarand Paranjape,et al.  Fabricating multilevel SU-8 structures in a single photolithographic step using colored masking patterns , 2006 .

[122]  Juergen Mohr,et al.  Soft X-ray lithography of high aspect ratio SU8 submicron structures , 2008 .

[123]  J. Florkey,et al.  From batch to continuous manufacturing of microbiomedical devices. , 2000, Chemical reviews.

[124]  A. G. Emslie,et al.  Flow of a Viscous Liquid on a Rotating Disk , 1958 .

[125]  G.-A. Racine,et al.  Microfabrication of 3D multidirectional inclined structures by UV lithography and electroplating , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[126]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 2. Data for polymers , 2004, Electrophoresis.