Fully Packed Loop configurations in a triangle

Fully Packed Loop configurations (FPLs) are certain configurations on the square grid, naturally refined according to certain link patterns. If A"X is the number of FPLs with link pattern X, the Razumov-Stroganov correspondence provides relations between numbers A"X relative to a given grid size. In another line of research, if [email protected]?p denotes X with p additional nested arches, then A"X"@?"p was shown to be polynomial in p: the proof gives rise to certain configurations of FPLs in a triangle (TFPLs). In this work we investigate these TFPL configurations and their relation to FPLs. We prove certain properties of TFPLs, and enumerate them under special boundary conditions. From this study we deduce a class of linear relations, conjectured by Thapper, between quantities A"X relative to different grid sizes, relations which thus differ from the Razumov-Stroganov ones.

[1]  A. Populaire samenvatting,et al.  Proof of the Razumov-Stroganov conjecture , 2006 .

[2]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[3]  Johan Thapper,et al.  Refined Counting of Fully Packed Loop Configurations , 2007 .

[4]  Jean-Bernard Zuber On the Counting of Fully Packed Loop Configurations: Some New Conjectures , 2004, Electron. J. Comb..

[5]  Greg Kuperberg,et al.  Another proof of the alternating sign matrix conjecture , 1996 .

[6]  P. Di Francesco,et al.  On fully packed loop configurations with four sets of nested arches , 2004 .

[7]  Christian Krattenthaler,et al.  Proof of two conjectures of Zuber on fully packed loop configurations , 2004, J. Comb. Theory, Ser. A.

[8]  Christian Krattenthaler,et al.  On the Number of Fully Packed Loop Configurations with a Fixed Associated Matching , 2005, Electron. J. Comb..

[9]  A. Razumov,et al.  Combinatorial Nature of the Ground-State Vector of the O(1) Loop Model , 2001 .

[10]  P. Zinn-Justin,et al.  On some ground state components of the O(1) loop model , 2009, 0901.1679.

[11]  R. Stanley Theory and applications of plane partitions: Part 1 , 1971 .

[12]  Александр Витальевич Разумов,et al.  Комбинаторная природа вектора основного состояния $O(1)$ петлевой модели@@@Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model , 2004 .

[13]  Paul Zinn-Justin,et al.  A Conjectured Formula for Fully Packed Loop Configurations in a Triangle , 2009, Electron. J. Comb..

[14]  Doron Zeilberger,et al.  Proof of the alternating sign matrix conjecture , 1994, Electron. J. Comb..

[15]  Jan de Gier Loops, matchings and alternating-sign matrices , 2005, Discret. Math..

[16]  James Gary Propp,et al.  The Many Faces of Alternating-Sign Matrices , 2002, DM-CCG.

[17]  Benjamin Wieland Large Dihedral Symmetry of the Set of Alternating Sign Matrices , 2000, Electron. J. Comb..

[18]  W. H. Mills,et al.  Proof of the Macdonald conjecture , 1982 .

[19]  Philippe Nadeau,et al.  Fully Packed Loop configurations in a triangle and Littlewood-Richardson coefficients , 2011, J. Comb. Theory, Ser. A.