Fully Packed Loop configurations in a triangle
暂无分享,去创建一个
[1] A. Populaire samenvatting,et al. Proof of the Razumov-Stroganov conjecture , 2006 .
[2] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[3] Johan Thapper,et al. Refined Counting of Fully Packed Loop Configurations , 2007 .
[4] Jean-Bernard Zuber. On the Counting of Fully Packed Loop Configurations: Some New Conjectures , 2004, Electron. J. Comb..
[5] Greg Kuperberg,et al. Another proof of the alternating sign matrix conjecture , 1996 .
[6] P. Di Francesco,et al. On fully packed loop configurations with four sets of nested arches , 2004 .
[7] Christian Krattenthaler,et al. Proof of two conjectures of Zuber on fully packed loop configurations , 2004, J. Comb. Theory, Ser. A.
[8] Christian Krattenthaler,et al. On the Number of Fully Packed Loop Configurations with a Fixed Associated Matching , 2005, Electron. J. Comb..
[9] A. Razumov,et al. Combinatorial Nature of the Ground-State Vector of the O(1) Loop Model , 2001 .
[10] P. Zinn-Justin,et al. On some ground state components of the O(1) loop model , 2009, 0901.1679.
[11] R. Stanley. Theory and applications of plane partitions: Part 1 , 1971 .
[12] Александр Витальевич Разумов,et al. Комбинаторная природа вектора основного состояния $O(1)$ петлевой модели@@@Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model , 2004 .
[13] Paul Zinn-Justin,et al. A Conjectured Formula for Fully Packed Loop Configurations in a Triangle , 2009, Electron. J. Comb..
[14] Doron Zeilberger,et al. Proof of the alternating sign matrix conjecture , 1994, Electron. J. Comb..
[15] Jan de Gier. Loops, matchings and alternating-sign matrices , 2005, Discret. Math..
[16] James Gary Propp,et al. The Many Faces of Alternating-Sign Matrices , 2002, DM-CCG.
[17] Benjamin Wieland. Large Dihedral Symmetry of the Set of Alternating Sign Matrices , 2000, Electron. J. Comb..
[18] W. H. Mills,et al. Proof of the Macdonald conjecture , 1982 .
[19] Philippe Nadeau,et al. Fully Packed Loop configurations in a triangle and Littlewood-Richardson coefficients , 2011, J. Comb. Theory, Ser. A.