3D Mumford-Shah Based Active Mesh

Deformable mesh methods have become an alternative of choice to classical deformable models for 3D image understanding. They allow to render the evolving surface directly during the segmentation process in a fast and efficient way, avoiding both the additional time-cost and approximation errors induced by 3D reconstruction algorithms after segmentation. Current methods utilize edge-based forces to attract the mesh surface toward the image entities. These forces are inadequate in 3D fluorescence microscopy, where edges are not well defined by gradient. In this paper, we propose a fully automated deformable 3D mesh model that deforms using the reduced Mumford-Shah functional to segment and track objects with fuzzy boundaries. Simultaneous rendering of the mesh evolution allows faster tweaking of the model parameters and offers biologists a more precise insight on the scene and hence better understanding of biological phenomena. We present evaluations on both synthetic and real 3D microscopy data.

[1]  Christophe Zimmer,et al.  Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces , 2005, IEEE Transactions on Image Processing.

[2]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[4]  Jerry L. Prince,et al.  Reconstruction of the human cerebral cortex from magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[5]  Hervé Delingette,et al.  Modélisation, déformation et reconnaissance d'objets tridimensionnels à l'aide de maillages simplexes , 1994 .

[6]  Alessandro Sarti,et al.  A geometric model for 3-D confocal image analysis , 1998, IEEE Transactions on Biomedical Engineering.

[7]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[8]  Jacques-Olivier Lachaud,et al.  Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction , 1999, Medical Image Anal..

[9]  Daniel Cremers,et al.  Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional , 2002, International Journal of Computer Vision.

[10]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[11]  Jean-Christophe Olivo-Marin,et al.  Coupled parametric active contours , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  N. Paragios A level set approach for shape-driven segmentation and tracking of the left ventricle , 2003, IEEE Transactions on Medical Imaging.

[13]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[15]  Richard Szeliski,et al.  Physically based and probabilistic models for computer vision , 1991, Optics & Photonics.

[16]  Cybèle Ciofolo Segmentation de formes guidée par des modèles en neuro-imagerie : intégration de la commande floue dans une méthode de segmentation par ensembles de niveau , 2005 .

[17]  Hervé Delingette,et al.  General Object Reconstruction Based on Simplex Meshes , 1999, International Journal of Computer Vision.

[18]  Herve Delingette,et al.  Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation , 1999, IEEE Trans. Vis. Comput. Graph..

[19]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.