Blade materials, testing methods and structural design

A major trend in wind energy is the development of larger wind turbines for offshore wind farms. Since access to offshore wind turbines is diffi cult and costly, it is of great importance that they operate safely and reliable. The wind turbine rotor blades, which are the largest rotating component of a wind turbine, are designed for an expected lifetime of 20 years. During this period of time, the blades will be subjected to varying loads. Large wind turbine blades are made of composite materials and can develop a number of interacting failure modes. High structural reliability can be achieved by designing the blades against the development of these failure modes. This chapter provides an overview of experimental and modeling tools for the design of wind turbine blades, with particular emphasis on evolution and interaction of various failure modes. This involves knowledge of materials, testing methods and structural design.

[1]  Kim Branner,et al.  Application and Analysis of Sandwich Elements in the Primary Structure of Large Wind Turbine Blades , 2007 .

[2]  A. Lystrup,et al.  Composite materials for wind power turbine blades , 2005 .

[3]  Tom Løgstrup Andersen,et al.  A New Static and Fatigue Compression Test Method for Composites , 2011 .

[4]  Lennart Kühlmeier Buckling of wind turbine rotor blades: Analysis, design and experimental validation , 2007 .

[5]  Walter Musial,et al.  Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades , 2003 .

[6]  Bent F. Sørensen,et al.  Development of a Bamboo-Based Composite as a Sustainable Green Material for Wind Turbine Blades , 2009 .

[7]  J. K. Spelt,et al.  Application of a new constant G load-jig to creep crack growth in adhesive joints , 1995 .

[8]  A. Evans,et al.  Matrix fatigue cracking in fiber composites , 1990 .

[9]  M. Pavier,et al.  The effect of delamination geometry on the compressive failure of composite laminates , 2001 .

[10]  Martyn J Pavier,et al.  Delaminations in flat and curved composite laminates subjected to compressive load , 2002 .

[11]  Martyn J Pavier,et al.  Experimental techniques for the investigation of the effects of impact damage on carbon-fibre composites , 1995 .

[12]  Dewey H. Hodges,et al.  Nonlinear Composite Beam Theory , 2006 .

[13]  Bent F. Sørensen,et al.  DCB-specimen loaded with uneven bending moments , 2006 .

[14]  M. Benzeggagh,et al.  Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading , 1997 .

[15]  Bent F. Sørensen,et al.  Strength scaling of adhesive joints in polymer–matrix composites , 2009 .

[16]  Steen Krenk,et al.  FINITE ELEMENTS FOR BEAM CROSS-SECTIONS OF MODERATE WALL THICKNESS , 1989 .

[17]  Paul M. Weaver,et al.  The Brazier effect in wind turbine blades and its influence on design , 2012 .

[18]  Knut O. Ronold,et al.  Estimation of fatigue curves for design of composite laminates , 1996 .

[19]  A. Kelly,et al.  Tensile first cracking strain and strength of hybrid composites and laminates , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  Bent F. Sørensen,et al.  Crack bridging in composites: Connecting mechanisms, micromechanics and macroscopic models , 2002 .

[21]  H. Lilholt,et al.  Fatigue performance of glass/polyester laminates and the monitoring of material degradation , 1996 .

[22]  H. Schürmann,et al.  FAILURE ANALYSIS OF FRP LAMINATES BY MEANS OF PHYSICALLY BASED PHENOMENOLOGICAL MODELS , 1998 .

[23]  L. Brazier ON THE FLEXURE OF THIN CYLINDRICAL SHELLS AND OTHER SECTION , 1927 .

[24]  Zhigang Suo,et al.  Delamination R-curve phenomena due to damage , 1992 .

[25]  J. H. Crews,et al.  Redesign of the Mixed-Mode Bending Delamination Test to Reduce Nonlinear Effects , 1992 .

[26]  J. E. Bailey,et al.  Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates , 1978 .

[27]  Bent F. Sørensen,et al.  Determination of mixed mode cohesive laws , 2006 .

[28]  Mark Edward Nichols,et al.  Anticipating paint cracking: The application of fracture mechanics to the study of paint weathering , 2002 .

[29]  B. Karihaloo,et al.  Buckling-driven delamination growth in composite laminates: Guidelines for assessing the threat posed by interlaminar matrix delamination , 2008 .

[30]  M. D. Thouless,et al.  The effects of geometry and material properties on the fracture of single lap-shear joints , 2002 .

[31]  A Linear Theory for Pretwisted Elastic Beams , 1983 .

[32]  Leif Asp,et al.  Delamination buckling and growth for delaminations at different depths in a slender composite panel , 2001 .

[33]  C. P. Debel,et al.  Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1) - Summary Report , 2004 .

[34]  S. Krenk The torsion-extension coupling in pretwisted elastic beams , 1983 .

[35]  F. M. Jensen,et al.  Structural testing and numerical simulation of a 34 m composite wind turbine blade , 2006 .

[36]  Lars C. T. Overgaard,et al.  Structural Design Sensitivity Analysis and Optimization of Vestas V52 Wind Turbine Blade , 2005 .

[37]  Daniel L. Laird,et al.  Finite Element Modeling of Wind Turbine Blades , 2005 .

[38]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[39]  Bent F. Sørensen,et al.  Characterizing delamination of fibre composites by mixed mode cohesive laws , 2009 .

[40]  John W. Gillespie,et al.  On the Analysis and Design of the End Notched Flexure (ENF) Specimen for Mode II Testing , 1986 .

[41]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[42]  J. Beuth Cracking of thin bonded films in residual tension , 1992 .

[43]  Kim Branner,et al.  Effect of sandwich core properties on ultimate strength of a wind turbine blade , 2008 .

[44]  Gunner Chr. Larsen,et al.  Modal Analysis of Wind Turbine Blades , 2002 .

[45]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[46]  Leon Mishnaevsky,et al.  Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites , 2009 .

[47]  Z. Suo,et al.  Tunneling Cracks in Constrained Layers , 1993 .

[48]  M. Pavier,et al.  Compressive failure of composite laminates containing multiple delaminations , 2005 .

[49]  Erik Lund,et al.  Large Scale Buckling Experiment and Validation of Predictive Capabilities , 2005 .

[50]  John W. Hutchinson,et al.  Interface strength, work of adhesion and plasticity in the peel test , 1998 .

[51]  C. P. Debel,et al.  Full scale testing of wind turbine blade to failure - flapwise loading , 2004 .

[52]  이재광,et al.  Wind Turbine Blades , 2012 .

[53]  Lars C. T. Overgaard,et al.  Damage Analysis of a Wind Turbine Blade , 2007 .

[54]  Brian N. Cox,et al.  The determination of crack bridging forces , 1991, International Journal of Fracture.

[55]  George S. Springer,et al.  The Behavior of Delaminations in Composite Plates—Analytical and Experimental Results , 1991 .

[56]  S. Abrate Impact on Laminated Composite Materials , 1991 .

[57]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[58]  Tove Jacobsen,et al.  Large scale bridging in compos-ites: R-curve and bridging laws , 1998 .

[59]  M. D. Thouless,et al.  Mixed-mode fracture analyses of plastically-deforming adhesive joints , 2001 .

[60]  K. Branner,et al.  Torsional performance of wind turbine blades - Part 2: Numerical validation , 2007 .

[61]  B. Cox Scaling for bridged cracks , 1993 .

[62]  Pretwist and Shear Flexibility in the Vibrations of Turbine Blades , 1985 .