Learning probabilistic classifiers for human–computer interaction applications

Human–computer interaction (HCI) lies at the crossroads of many scientific areas including artificial intelligence, computer vision, face recognition, motion tracking, etc. It is argued that to truly achieve effective human–computer intelligent interaction, the computer should be able to interact naturally with the user, similar to the way HCI takes place. In this paper, we discuss training probabilistic classifiers with labeled and unlabeled data for HCI applications. We provide an analysis that shows under what conditions unlabeled data can be used in learning to improve classification performance, and we investigate the implications of this analysis to a specific type of probabilistic classifiers, Bayesian networks. Finally, we show how the resulting algorithms are successfully employed in facial expression recognition, face detection, and skin detection.

[1]  Alex Pentland,et al.  Perceptual user interfaces: perceptual intelligence , 2000, CACM.

[2]  Lawrence S. Chen,et al.  Joint processing of audio-visual information for the recognition of emotional expressions in human-computer interaction , 2000 .

[3]  Gavin C. Cawley,et al.  Non-retrieval: Blocking Pornographic Images , 2002, CIVR.

[4]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[5]  Monson H. Hayes,et al.  Face Recognition Using An Embedded HMM , 1999 .

[6]  D. Goleman Emotional Intelligence: Why It Can Matter More Than IQ , 1995 .

[7]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[8]  L. Rothkrantz,et al.  Toward an affect-sensitive multimodal human-computer interaction , 2003, Proc. IEEE.

[9]  Alex Pentland,et al.  LAFTER: a real-time face and lips tracker with facial expression recognition , 2000, Pattern Recognit..

[10]  J. York,et al.  Bayesian Graphical Models for Discrete Data , 1995 .

[11]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[12]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[13]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[14]  Alex Pentland,et al.  Looking at People: Sensing for Ubiquitous and Wearable Computing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Alex Pentland,et al.  Face Recognition for Smart Environments , 2000, Computer.

[16]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[17]  Michael J. Black,et al.  Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion , 1995, Proceedings of IEEE International Conference on Computer Vision.

[18]  Thomas S. Huang,et al.  Generative and discriminative face modelling for detection , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[19]  Shigeru Akamatsu,et al.  Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[20]  Richard A. Foulds,et al.  Toward robust skin identification in video images , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[21]  Thomas S. Huang,et al.  Semisupervised Learning of Classifiers With Application to Human -Computer Interaction , 2003 .

[22]  David A. Bell,et al.  Learning Bayesian networks from data: An information-theory based approach , 2002, Artif. Intell..

[23]  Nicu Sebe,et al.  Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  James M. Rehg,et al.  Statistical Color Models with Application to Skin Detection , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[25]  T. Cover,et al.  The relative value of labeled and unlabeled samples in pattern recognition , 1993, Proceedings. IEEE International Symposium on Information Theory.

[26]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Nicu Sebe,et al.  Learning Bayesian network classifiers for facial expression recognition both labeled and unlabeled data , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[29]  Nir Friedman,et al.  The Bayesian Structural EM Algorithm , 1998, UAI.

[30]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[31]  Tomaso A. Poggio,et al.  Face recognition: component-based versus global approaches , 2003, Comput. Vis. Image Underst..

[32]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[33]  Clement T. Yu,et al.  Detecting human faces in color images , 1998, Proceedings International Workshop on Multi-Media Database Management Systems (Cat. No.98TB100249).

[34]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[35]  P. Ekman,et al.  Strong evidence for universals in facial expressions: a reply to Russell's mistaken critique. , 1994, Psychological bulletin.

[36]  Andrew McCallum,et al.  Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.

[37]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[38]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[39]  Shumeet Baluja,et al.  Probabilistic Modeling for Face Orientation Discrimination: Learning from Labeled and Unlabeled Data , 1998, NIPS.

[40]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Thomas S. Huang,et al.  Connected vibrations: a modal analysis approach for non-rigid motion tracking , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[42]  Nicu Sebe,et al.  Facial expression recognition from video sequences: temporal and static modeling , 2003, Comput. Vis. Image Underst..

[43]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Larry S. Davis,et al.  Human expression recognition from motion using a radial basis function network architecture , 1996, IEEE Trans. Neural Networks.

[45]  Nicu Sebe,et al.  Emotion recognition using a Cauchy Naive Bayes classifier , 2002, Object recognition supported by user interaction for service robots.

[46]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[47]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Matthew Brand,et al.  An Entropic Estimator for Structure Discovery , 1998, NIPS.

[49]  Narendra Ahuja,et al.  A SNoW-Based Face Detector , 1999, NIPS.

[50]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Nicu Sebe,et al.  Facial expression recognition from video sequences , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[52]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[53]  Terence J. O'Neill Normal Discrimination with Unclassified Observations , 1978 .

[54]  Shaogang Gong,et al.  Modelling facial colour and identity with Gaussian mixtures , 1998, Pattern Recognit..

[55]  Santosh S. Venkatesh,et al.  Learning from a mixture of labeled and unlabeled examples with parametric side information , 1995, COLT '95.

[56]  Thomas S. Huang,et al.  Face detection with information-based maximum discrimination , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  Rayid Ghani,et al.  Combining Labeled and Unlabeled Data for MultiClass Text Categorization , 2002, ICML.

[58]  D. Goleman Emotional Intelligence. New York (Bantam) 1995. , 1995 .

[59]  David A. Forsyth,et al.  Finding Naked People , 1996, ECCV.

[60]  James L. Crowley,et al.  Robust face tracking using color , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[61]  Alex Pentland,et al.  Coding, Analysis, Interpretation, and Recognition of Facial Expressions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Henry Schneiderman,et al.  Learning a restricted Bayesian network for object detection , 2004, CVPR 2004.

[63]  Dariu Gavrila,et al.  Looking at people , 2007, AVSS.

[64]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[65]  M. Seeger Learning with labeled and unlabeled dataMatthias , 2001 .

[66]  Dante Augusto Couto Barone,et al.  Do mixture models in chromaticity space improve skin detection? , 2003, Pattern Recognit..

[67]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[68]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[69]  Abbas Z. Kouzani,et al.  Locating human faces within images , 2003, Comput. Vis. Image Underst..

[70]  Tong Zhang,et al.  The Value of Unlabeled Data for Classification Problems , 2000, ICML 2000.

[71]  Huicheng Zheng,et al.  Statistical Models for Skin Detection , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.