A modified Doyle-Fuller-Newman model enables the macroscale physical simulation of dual-ion batteries

[1]  M. Tebyetekerwa,et al.  Rechargeable Dual‐Carbon Batteries: A Sustainable Battery Technology , 2022, Advanced Energy Materials.

[2]  G. Cui,et al.  Rational Design of Functional Electrolytes towards Commercial Dual-Ion Batteries. , 2022, ChemSusChem.

[3]  Meiqi Liu,et al.  Spreading the Landscape of Dual Ion Batteries: from Electrode to Electrolyte. , 2022, ChemSusChem.

[4]  C. Please,et al.  Modeling Electrode Heterogeneity in Lithium-Ion Batteries: Unimodal and Bimodal Particle-Size Distributions , 2022, SIAM J. Appl. Math..

[5]  Yongbing Tang,et al.  A Review of Emerging Dual‐Ion Batteries: Fundamentals and Recent Advances , 2021, Advanced Functional Materials.

[6]  Johannes C. Brendel,et al.  Adaptation of electrodes and printable gel polymer electrolytes for optimized fully organic batteries , 2021, Journal of Polymer Science.

[7]  Jens Leker,et al.  Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure , 2021, Nature Energy.

[8]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[9]  M. Winter,et al.  Experimental and computational studies of electrochemical anion intercalation into graphite from target-oriented designed borate-based ionic liquid electrolytes , 2020 .

[10]  M. Winter,et al.  Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries , 2018, Joule.

[11]  Mahesh Mynam,et al.  Effect of Salt Concentration on Properties of Lithium Ion Battery Electrolytes: A Molecular Dynamics Study , 2018 .

[12]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[13]  O. Borodin,et al.  Charge storage at the nanoscale: understanding the trends from the molecular scale perspective , 2017 .

[14]  M. Winter,et al.  Does Size really Matter? New Insights into the Intercalation Behavior of Anions into a Graphite-Based Positive Electrode for Dual-Ion Batteries , 2016 .

[15]  Masoud Aryanpour,et al.  Design of Composite Electrodes with Anion-Absorbing Active Materials , 2016 .

[16]  J. Rolland,et al.  Melt-polymerization of TEMPO methacrylates with nano carbons enables superior battery materials. , 2015, ChemSusChem.

[17]  K. Tasaki Density Functional Theory Study on Structural and Energetic Characteristics of Graphite Intercalation Compounds , 2014 .

[18]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[19]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[20]  Alain Oustaloup,et al.  A Mathematical Model for the Simulation of New and Aged Automotive Lead-Acid Batteries , 2008 .

[21]  J. Dahn,et al.  Energy and Capacity Projections for Practical Dual‐Graphite Cells , 2000 .

[22]  J. Newman,et al.  Double‐Layer Capacitance in a Dual Lithium Ion Insertion Cell , 1999 .

[23]  H. Gasteiger,et al.  Temperature and Concentration Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes , 2019, Journal of The Electrochemical Society.

[24]  Dennis W. Dees,et al.  Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2 , 2008 .

[25]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .