Multiphase MoS_2 monolayer: A promising anode material for Mg-Ion batteries

[1]  Changcheng Chen,et al.  Twin-Graphene: A Promising Anode Material for Lithium-Ion Batteries with Ultrahigh Specific Capacity , 2023, The Journal of Physical Chemistry C.

[2]  Aobing Du,et al.  Progress and perspective on rechargeable magnesium-ion batteries , 2022, Science China Chemistry.

[3]  W. Zhang,et al.  Phase Transformation of 1T′-MoS2 Induced by Electrochemical Prelithiation for Lithium-Ion Storage , 2022, ACS Applied Energy Materials.

[4]  A. Gagliardi,et al.  Rational design of selenium inserted 1T/2H mixed-phase molybdenum disulfide for energy storage and pollutant degradation applications , 2022, Nanotechnology.

[5]  A. Tuantranont,et al.  Advances in rechargeable magnesium batteries employing graphene-based materials , 2022, Carbon.

[6]  X. Duan,et al.  2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. , 2022, Chemical reviews.

[7]  Huimin Yin,et al.  1T-MoS2 monolayer as a promising anode material for (Li/Na/Mg)-ion batteries , 2022, Applied Surface Science.

[8]  Yongzhu Fu,et al.  Dynamic 1T-2H Mixed-Phase MoS2 Enables High-Performance Li-Organosulfide Battery. , 2021, Small.

[9]  Chun‐Sing Lee,et al.  Development and challenges of electrode materials for rechargeable Mg batteries , 2021 .

[10]  Shuping Huang,et al.  Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries , 2021 .

[11]  Aobing Du,et al.  Current Design Strategies for Rechargeable Magnesium-Based Batteries. , 2021, ACS nano.

[12]  C. Jin,et al.  Interlayer Coupling Dependent Discrete H → T' Phase Transition in Lithium Intercalated Bilayer Molybdenum Disulfide. , 2021, ACS nano.

[13]  R. Ahuja,et al.  High-Specific-Capacity and High-Performing Post-Lithium-Ion Battery Anode over 2D Black Arsenic Phosphorus , 2021, ACS Applied Energy Materials.

[14]  Hyun‐Seok Kim,et al.  Theoretical evaluation and experimental investigation of layered 2H/1T-phase MoS2 and its reduced graphene-oxide hybrids for hydrogen evolution reactions , 2021, Journal of Alloys and Compounds.

[15]  E. Ruckenstein,et al.  Reshaping two-dimensional MoS2 for superior magnesium-ion battery anodes. , 2021, Journal of colloid and interface science.

[16]  Vipin Kumar,et al.  Ca2C MXene monolayer as a superior anode for metal-ion batteries , 2021, 2D Materials.

[17]  Kinde Anlay Fante,et al.  A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration , 2020, Sustainability.

[18]  R. Dominko,et al.  Magnesium batteries: Current picture and missing pieces of the puzzle , 2020, Journal of Power Sources.

[19]  Sang Uck Lee,et al.  Mechanically robust, self-healing graphene like defective SiC: A prospective anode of Li-ion batteries , 2020 .

[20]  R. Ma,et al.  Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution , 2020 .

[21]  D. Aurbach,et al.  Alloy Anode Materials for Rechargeable Mg Ion Batteries , 2020, Advanced Energy Materials.

[22]  Shaojun Guo,et al.  Recent Advances in Rechargeable Magnesium‐Based Batteries for High‐Efficiency Energy Storage , 2020, Advanced Energy Materials.

[23]  M. A. Zaeem,et al.  Stone–Wales Defect Induced Performance Improvement of BC3 Monolayer for High Capacity Lithium-Ion Rechargeable Battery Anode Applications , 2020 .

[24]  S. Pal,et al.  Defect Induced Performance Enhancement of Monolayer MoS2 for Li- and Na-Ion Batteries , 2019, The Journal of Physical Chemistry C.

[25]  C. Lee,et al.  Two-dimensional haeckelite h567: A promising high capacity and fast Li diffusion anode material for lithium-ion batteries , 2019, Carbon.

[26]  Xiaohong Yan,et al.  Monolayer, Bilayer, and Heterostructure Arsenene as Potential Anode Materials for Magnesium-Ion Batteries: A First-Principles Study , 2019, The Journal of Physical Chemistry C.

[27]  Wei Zhao,et al.  Metastable MoS2 : Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. , 2018, Chemistry.

[28]  R. Capaz,et al.  Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study , 2018, Computational Materials Science.

[29]  Daryoush Habibi,et al.  Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality , 2018, Renewable and Sustainable Energy Reviews.

[30]  Liang Tang,et al.  Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage , 2018 .

[31]  D. Truhlar,et al.  MnSb2S4 Monolayer as an Anode Material for Metal-Ion Batteries , 2018 .

[32]  Seung‐Wan Song,et al.  Magnesium stannide as a high-capacity anode for magnesium-ion batteries , 2017 .

[33]  T. Rabczuk,et al.  Flat borophene films as anode materials for Mg, Na or Li-ion batteries with ultra high capacities: A first-principles study , 2017, 1705.02472.

[34]  Yan-Jie Wang,et al.  Swollen Ammoniated MoS2 with 1T/2H Hybrid Phases for High-Rate Electrochemical Energy Storage , 2017 .

[35]  Senthilkumar Lakshmipathi,et al.  Calcium decorated and doped phosphorene for gas adsorption , 2016 .

[36]  R. Ruoff,et al.  Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries , 2016 .

[37]  J. Goodenough Energy storage materials: A perspective , 2015 .

[38]  Z. Fu,et al.  Hybrid system for rechargeable magnesium battery with high energy density , 2015, Scientific Reports.

[39]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[40]  Nikhil V. Medhekar,et al.  Ab initio characterization of layered MoS2 as anode for sodium-ion batteries , 2014 .

[41]  Xuedong Bai,et al.  Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. , 2014, Journal of the American Chemical Society.

[42]  Yuyan Shao,et al.  Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. , 2014, Nano letters.

[43]  Yong‐Sheng Hu,et al.  Lithium storage in commercial MoS2 in different potential ranges , 2012 .

[44]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[45]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[46]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[47]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[48]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[49]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[50]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[51]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[52]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[53]  Xiaochen Hou,et al.  Recent Advances and Challenges of Two‐Dimensional Materials for High‐Energy and High‐Power Lithium‐Ion Capacitors , 2019 .

[54]  Senthilkumar Lakshmipathi,et al.  Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives , 2016, Journal of Materials Science.