Yang-Lee Edge Singularity and ϕ 3 Field Theory
暂无分享,去创建一个
The edge of the gap in the distribution of Yang-Lee zeros at $H=i{H}_{0}(T)$ on the imaginary magnetic field axis in ferromagnets above ${T}_{c}$ is essentially a critical point. In terms of the edge exponents $\ensuremath{\delta}$ and $\ensuremath{\eta}$, the density of zeros obeys $\mathcal{G}({H}^{\ensuremath{'}\ensuremath{'}})\ensuremath{\sim}{[{H}^{\ensuremath{'}\ensuremath{'}}\ensuremath{-}{H}_{0}(T)]}^{\ensuremath{\sigma}}$, with $\ensuremath{\sigma}=\frac{1}{\ensuremath{\delta}}=\frac{(d\ensuremath{-}2+\ensuremath{\eta})}{({d}_{2}\ensuremath{-}\ensuremath{\eta})}$. Classical behavior ($\ensuremath{\sigma}=\frac{1}{2}$) occurs for $dg{d}^{\ifmmode\times\else\texttimes\fi{}}=6$. The appropriate field-theoretic renormalization group entails a $w{\ensuremath{\phi}}^{3}$ coupling and, with $\ensuremath{\epsilon}=6\ensuremath{-}dg~0$, yields $\ensuremath{\eta}\ensuremath{\approx}\ensuremath{-}\frac{\ensuremath{\epsilon}}{9}$ for all $nl\ensuremath{\infty}$. This correlates well with refined series estimates for $d=2$ and $d=3$ and with exact results for $d=1$ ($\ensuremath{\eta}=\ensuremath{-}1$).