The Importance of Consistent Global Forest Aboveground Biomass Product Validation

[1]  Sassan Saatchi,et al.  Using a Finer Resolution Biomass Map to Assess the Accuracy of a Regional, Map-Based Estimate of Forest Biomass , 2019, Surveys in Geophysics.

[2]  Christoph Eck,et al.  New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar , 2019, Surveys in Geophysics.

[3]  Klaus Scipal,et al.  Ground Data are Essential for Biomass Remote Sensing Missions , 2019, Surveys in Geophysics.

[4]  Erik Næsset,et al.  The Role and Need for Space-Based Forest Biomass-Related Measurements in Environmental Management and Policy , 2019, Surveys in Geophysics.

[5]  Christophe Sannier,et al.  The effects of imperfect reference data on remote sensing-assisted estimators of land cover class proportions , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[6]  Klaus Scipal,et al.  In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  David Kenfack,et al.  Global importance of large‐diameter trees , 2018 .

[8]  F. Kraxner,et al.  Improved Estimates of Biomass Expansion Factors for Russian Forests , 2018, Forests.

[9]  M. Herold,et al.  Independent data for transparent monitoring of greenhouse gas emissions from the land use sector – What do stakeholders think and need? , 2018, Environmental Science & Policy.

[10]  M I Disney,et al.  Weighing trees with lasers: advances, challenges and opportunities , 2018, Interface Focus.

[11]  A. Camia,et al.  An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots , 2018, Forest ecology and management.

[12]  M. Herold,et al.  Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR , 2017 .

[13]  J. Chave,et al.  biomass: an r package for estimating above‐ground biomass and its uncertainty in tropical forests , 2017 .

[14]  J. Trochta,et al.  3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR , 2017, PloS one.

[15]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[16]  R. Chimner,et al.  Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground‐penetrating radar (GPR) , 2017 .

[17]  Sean Sweeney,et al.  Tree‐mycorrhizal associations detected remotely from canopy spectral properties , 2016, Global change biology.

[18]  Arief Wijaya,et al.  An integrated pan‐tropical biomass map using multiple reference datasets , 2016, Global change biology.

[19]  Shengli Tao,et al.  Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data , 2015 .

[20]  R. Dubayah,et al.  Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests , 2015, Scientific Reports.

[21]  F. M. Danson,et al.  Terrestrial Laser Scanning for Plot-Scale Forest Measurement , 2015, Current Forestry Reports.

[22]  Urs Wegmüller,et al.  Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR , 2015 .

[23]  Geoffrey G. Parker,et al.  The importance of spatial detail: Assessing the utility of individual crown information and scaling approaches for lidar-based biomass density estimation , 2015 .

[24]  Wenli Huang,et al.  Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA , 2015, Carbon Balance and Management.

[25]  Guoqing Sun,et al.  Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1 , 2015 .

[26]  M. Herold,et al.  Nondestructive estimates of above‐ground biomass using terrestrial laser scanning , 2015 .

[27]  David Kenfack,et al.  Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks , 2014 .

[28]  F. Achard,et al.  Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting REDD+ activities under UNFCCC? , 2014 .

[29]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[30]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[31]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[32]  C. Schmullius,et al.  Carbon stock and density of northern boreal and temperate forests , 2014 .

[33]  R. B. Jackson,et al.  The Structure, Distribution, and Biomass of the World's Forests , 2013 .

[34]  S. Goetz,et al.  Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps , 2013, Carbon Balance and Management.

[35]  Guoqing Sun,et al.  Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR , 2013 .

[36]  Guoqing Sun,et al.  Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales , 2013 .

[37]  Paul Siqueira,et al.  Uncertainty of Forest Biomass Estimates in North Temperate Forests Due to Allometry: Implications for Remote Sensing , 2013, Remote. Sens..

[38]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[39]  D. Clark,et al.  Tropical forest biomass estimation and the fallacy of misplaced concreteness , 2012 .

[40]  W. Salas,et al.  Baseline Map of Carbon Emissions from Deforestation in Tropical Regions , 2012, Science.

[41]  Andrew J. Larson,et al.  Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest , 2012, PloS one.

[42]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[43]  G. Asner,et al.  Evaluating uncertainty in mapping forest carbon with airborne LiDAR , 2011 .

[44]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[45]  Jacob Strunk,et al.  Using Airborne Light Detection and Ranging as a Sampling Tool for Estimating Forest Biomass Resources in the Upper Tanana Valley of Interior Alaska , 2011 .

[46]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[47]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[48]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[49]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[50]  Michael A. Wulder,et al.  Estimating forest canopy height and terrain relief from GLAS waveform metrics , 2010 .

[51]  U. Wollschläger,et al.  Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site , 2009 .

[52]  Hans-Erik Andersen,et al.  Using airborne light detection and ranging (LIDAR) to characterize forest stand condition on the Kenai Peninsula of Alaska. , 2009 .

[53]  S. Goetz,et al.  Mapping and monitoring carbon stocks with satellite observations: a comparison of methods , 2009, Carbon balance and management.

[54]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[55]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[56]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[57]  A. Prokushkin,et al.  Critical analysis of root : shoot ratios in terrestrial biomes , 2006 .

[58]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[59]  M. Barton,et al.  Footprints of Fe-oxide(-Cu-Au) systems , 2004 .

[60]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[61]  J. Cermak,et al.  Mapping tree root systems with ground-penetrating radar. , 1999, Tree physiology.

[62]  N. Batjes,et al.  Total carbon and nitrogen in the soils of the world , 1996 .