Chaotic signal-induced dynamics of degenerate optical parametric oscillator
暂无分享,去创建一个
Ma Jun | Jin Wu-Yin | Li Yan-Long | Ma Jun | Li Yan-long | Jin Wu-yin
[1] G. Hu,et al. Controlling Turbulence in the Complex Ginzburg-Landau Equation , 1998 .
[2] Ma Jun,et al. Hyperchaos synchronization and control using intermittent feedback , 2005 .
[3] Ma Jun,et al. An Anti-Control Scheme for Spiral under Lorenz Chaotic Signals , 2005 .
[4] S. Boccaletti,et al. Synchronization of chaotic systems , 2001 .
[5] Peter Hult,et al. Chaotic dynamics of respiratory sounds , 2006 .
[6] Paul Mandel,et al. Instabilities of the degenerate optical parametric oscillator , 1989 .
[7] S. Boccaletti,et al. The control of chaos: theory and applications , 2000 .
[8] Brambilla,et al. Formation and evolution of roll patterns in optical parametric oscillators. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[9] Zuntao Fu,et al. The Hopf bifurcation and spiral wave solution of the complex Ginzburg–Landau equation , 2002 .
[10] Bin Deng,et al. Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control , 2007 .
[11] Xin Houwen,et al. NOISE INDUCED PATTERN TRANSITION AND SPATIOTEMPORAL STOCHASTIC RESONANCE , 1998 .
[12] Ying-Cheng Lai,et al. Controlling chaos , 1994 .
[13] Shen Ke,et al. Phase synchronization and anti-phase synchronization of chaos for degenerate optical parametric oscillator , 2005 .
[14] Ma Jun,et al. Evolution of Spiral Waves under Modulated Electric Fields , 2005 .
[15] Kestutis Staliunas,et al. Spatial-localized structures in degenerate optical parametric oscillators , 1998 .
[16] Ju H. Park,et al. A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .
[17] Jia Lu,et al. Computing Lyapunov exponents of continuous dynamical systems: method of Lyapunov vectors , 2005 .
[18] Juergen Kurths,et al. Turbulence control by developing a spiral wave with a periodic signal injection in the complex Ginzburg-Landau equation. , 2002 .