Chaotic signal-induced dynamics of degenerate optical parametric oscillator

Abstract The degenerate optical parametric oscillator (DOPO) is investigated. We introduced a normal Lorenz chaotic signal to adjust the amplitude and period of the input electric field in order to influence the dynamics of the time-dependent system. Our numerical simulation results based on the phase figures and Lyapunov exponents spectrum confirm that the characters of the DOPO are determined by the amplitude of the input field, and the system could be controlled to reach n-periodical (n = 1, 2, 3, 4, 5, etc.) orbit, chaotic and/ or hyperchaotic and stable state by using a modified scheme based on the self-adaptive stratagem.

[1]  G. Hu,et al.  Controlling Turbulence in the Complex Ginzburg-Landau Equation , 1998 .

[2]  Ma Jun,et al.  Hyperchaos synchronization and control using intermittent feedback , 2005 .

[3]  Ma Jun,et al.  An Anti-Control Scheme for Spiral under Lorenz Chaotic Signals , 2005 .

[4]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[5]  Peter Hult,et al.  Chaotic dynamics of respiratory sounds , 2006 .

[6]  Paul Mandel,et al.  Instabilities of the degenerate optical parametric oscillator , 1989 .

[7]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[8]  Brambilla,et al.  Formation and evolution of roll patterns in optical parametric oscillators. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  Zuntao Fu,et al.  The Hopf bifurcation and spiral wave solution of the complex Ginzburg–Landau equation , 2002 .

[10]  Bin Deng,et al.  Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control , 2007 .

[11]  Xin Houwen,et al.  NOISE INDUCED PATTERN TRANSITION AND SPATIOTEMPORAL STOCHASTIC RESONANCE , 1998 .

[12]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[13]  Shen Ke,et al.  Phase synchronization and anti-phase synchronization of chaos for degenerate optical parametric oscillator , 2005 .

[14]  Ma Jun,et al.  Evolution of Spiral Waves under Modulated Electric Fields , 2005 .

[15]  Kestutis Staliunas,et al.  Spatial-localized structures in degenerate optical parametric oscillators , 1998 .

[16]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[17]  Jia Lu,et al.  Computing Lyapunov exponents of continuous dynamical systems: method of Lyapunov vectors , 2005 .

[18]  Juergen Kurths,et al.  Turbulence control by developing a spiral wave with a periodic signal injection in the complex Ginzburg-Landau equation. , 2002 .