Limit laws of the empirical Wasserstein distance: Gaussian distributions
暂无分享,去创建一个
Axel Munk | Thomas Rippl | Anja Sturm | A. Munk | A. Sturm | Thomas Rippl
[1] David W. Lewis,et al. Matrix theory , 1991 .
[2] János Komlós,et al. On optimal matchings , 1984, Comb..
[3] David S. Gilliam,et al. The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications , 2009, Int. J. Math. Math. Sci..
[4] Claudia Czado,et al. Assessing the similarity of distributions - finite sample performance of the empirical mallows distance , 1998 .
[5] F. Götze,et al. RESAMPLING FEWER THAN n OBSERVATIONS: GAINS, LOSSES, AND REMEDIES FOR LOSSES , 2012 .
[6] E. Giné,et al. Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances , 2005 .
[7] E. Cheney. Analysis for Applied Mathematics , 2001 .
[8] P. Gänssler. Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .
[9] Ambuj K. Singh,et al. Quantifying spatial relationships from whole retinal images , 2013, Bioinform..
[10] M. Gelbrich. On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces , 1990 .
[11] Thibaut Le Gouic,et al. Distribution's template estimate with Wasserstein metrics , 2011, 1111.5927.
[12] E. Barrio,et al. Rates of convergence for partial mass problems , 2013 .
[13] T. N. Bhat,et al. The Protein Data Bank , 2000, Nucleic Acids Res..
[14] J. Shao,et al. The jackknife and bootstrap , 1996 .
[15] J. A. Cuesta-Albertos,et al. Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests , 2000 .
[16] I. Olkin,et al. The distance between two random vectors with given dispersion matrices , 1982 .
[17] Michael Habeck,et al. Inferential NMR/X-ray-based structure determination of a dibenzo[a,d]cycloheptenone inhibitor-p38α MAP kinase complex in solution. , 2012, Angewandte Chemie.
[18] A. Munk,et al. On Hadamard differentiability in k -sample semiparametric models: with applications to the assessment of structural relationships , 2005 .
[19] C. Czado,et al. A nonparametric test for similarity of marginals—With applications to the assessment of population bioequivalence , 2007 .
[20] A. McNeil,et al. The t Copula and Related Copulas , 2005 .
[21] E. Giné,et al. Central limit theorems for the wasserstein distance between the empirical and the true distributions , 1999 .
[22] S. S. Vallender. Calculation of the Wasserstein Distance Between Probability Distributions on the Line , 1974 .
[23] Frits H. Ruymgaart,et al. Some Applications of Watson's Perturbation Approach to Random Matrices , 1997 .
[24] P. Major. On the invariance principle for sums of independent identically distributed random variables , 1978 .
[25] Jack D. Dunitz,et al. Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature , 1996 .
[26] Jean-Michel Loubes,et al. A parametric registration model for warped distributions with Wasserstein's distance , 2015, J. Multivar. Anal..
[27] S. Rachev,et al. Mass transportation problems , 1998 .
[28] J. Yukich,et al. Asymptotics for transportation cost in high dimensions , 1995 .
[29] D. Dowson,et al. The Fréchet distance between multivariate normal distributions , 1982 .
[30] Michel Talagrand,et al. Matching Random Samples in Many Dimensions , 1992 .
[31] C. Mallows. A Note on Asymptotic Joint Normality , 1972 .
[32] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .
[33] O. Smolyanov,et al. The theory of differentiation in linear topological spaces , 1967 .
[34] M. Fréchet. Sur les tableaux de correlation dont les marges sont donnees , 1951 .
[35] C. Czado,et al. Nonparametric validation of similar distributions and assessment of goodness of fit , 1998 .
[36] J. Dieudonne. Foundations of Modern Analysis , 1969 .
[37] S. Rachev,et al. A characterization of random variables with minimum L 2 -distance , 1990 .
[38] J. A. Cuesta-Albertos,et al. On lower bounds for theL2-Wasserstein metric in a Hilbert space , 1996 .
[39] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[40] J. A. Cuesta-Albertos,et al. Trimmed Comparison of Distributions , 2008 .
[41] M. Knott,et al. On the optimal mapping of distributions , 1984 .
[42] Anthony C. Davison,et al. Bootstrap Methods and Their Application , 1998 .
[43] A. Guillin,et al. On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.