Limit laws of the empirical Wasserstein distance: Gaussian distributions

We derive central limit theorems for the Wasserstein distance between the empirical distributions of Gaussian samples. The cases are distinguished whether the underlying laws are the same or different. Results are based on the (quadratic) Frechet differentiability of the Wasserstein distance in the gaussian case. Extensions to elliptically symmetric distributions are discussed as well as several applications such as bootstrap and statistical testing.

[1]  David W. Lewis,et al.  Matrix theory , 1991 .

[2]  János Komlós,et al.  On optimal matchings , 1984, Comb..

[3]  David S. Gilliam,et al.  The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications , 2009, Int. J. Math. Math. Sci..

[4]  Claudia Czado,et al.  Assessing the similarity of distributions - finite sample performance of the empirical mallows distance , 1998 .

[5]  F. Götze,et al.  RESAMPLING FEWER THAN n OBSERVATIONS: GAINS, LOSSES, AND REMEDIES FOR LOSSES , 2012 .

[6]  E. Giné,et al.  Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances , 2005 .

[7]  E. Cheney Analysis for Applied Mathematics , 2001 .

[8]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[9]  Ambuj K. Singh,et al.  Quantifying spatial relationships from whole retinal images , 2013, Bioinform..

[10]  M. Gelbrich On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces , 1990 .

[11]  Thibaut Le Gouic,et al.  Distribution's template estimate with Wasserstein metrics , 2011, 1111.5927.

[12]  E. Barrio,et al.  Rates of convergence for partial mass problems , 2013 .

[13]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[14]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[15]  J. A. Cuesta-Albertos,et al.  Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests , 2000 .

[16]  I. Olkin,et al.  The distance between two random vectors with given dispersion matrices , 1982 .

[17]  Michael Habeck,et al.  Inferential NMR/X-ray-based structure determination of a dibenzo[a,d]cycloheptenone inhibitor-p38α MAP kinase complex in solution. , 2012, Angewandte Chemie.

[18]  A. Munk,et al.  On Hadamard differentiability in k -sample semiparametric models: with applications to the assessment of structural relationships , 2005 .

[19]  C. Czado,et al.  A nonparametric test for similarity of marginals—With applications to the assessment of population bioequivalence , 2007 .

[20]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[21]  E. Giné,et al.  Central limit theorems for the wasserstein distance between the empirical and the true distributions , 1999 .

[22]  S. S. Vallender Calculation of the Wasserstein Distance Between Probability Distributions on the Line , 1974 .

[23]  Frits H. Ruymgaart,et al.  Some Applications of Watson's Perturbation Approach to Random Matrices , 1997 .

[24]  P. Major On the invariance principle for sums of independent identically distributed random variables , 1978 .

[25]  Jack D. Dunitz,et al.  Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature , 1996 .

[26]  Jean-Michel Loubes,et al.  A parametric registration model for warped distributions with Wasserstein's distance , 2015, J. Multivar. Anal..

[27]  S. Rachev,et al.  Mass transportation problems , 1998 .

[28]  J. Yukich,et al.  Asymptotics for transportation cost in high dimensions , 1995 .

[29]  D. Dowson,et al.  The Fréchet distance between multivariate normal distributions , 1982 .

[30]  Michel Talagrand,et al.  Matching Random Samples in Many Dimensions , 1992 .

[31]  C. Mallows A Note on Asymptotic Joint Normality , 1972 .

[32]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[33]  O. Smolyanov,et al.  The theory of differentiation in linear topological spaces , 1967 .

[34]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[35]  C. Czado,et al.  Nonparametric validation of similar distributions and assessment of goodness of fit , 1998 .

[36]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[37]  S. Rachev,et al.  A characterization of random variables with minimum L 2 -distance , 1990 .

[38]  J. A. Cuesta-Albertos,et al.  On lower bounds for theL2-Wasserstein metric in a Hilbert space , 1996 .

[39]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[40]  J. A. Cuesta-Albertos,et al.  Trimmed Comparison of Distributions , 2008 .

[41]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[42]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[43]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.