Experimental and kinetic modeling of Fischer–Tropsch synthesis over nano structure catalyst of Co–Ru/carbon nanotube

[1]  L.F.F.P.G. Bragança,et al.  Catalytic performance of KL zeolite-supported iron and cobalt catalysts for the Fischer–Tropsch synthesis , 2018, Reaction Kinetics, Mechanisms and Catalysis.

[2]  Amir Mosayebi,et al.  Detailed kinetic study of Fischer – Tropsch synthesis for gasoline production over CoNi/HZSM-5 nano-structure catalyst , 2017 .

[3]  Amir Mosayebi,et al.  Fischer–Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method , 2017, Journal of Energy Chemistry.

[4]  A. Haghtalab,et al.  A Hybrid Reduction–Impregnation Method in Preparation of Co–Ru/γ-Al2O3 Catalyst for Fischer–Tropsch Synthesis , 2017, Catalysis Letters.

[5]  M. Sánchez-Domínguez,et al.  Ce-promoted Co/Al2O3 catalysts for Fischer-Tropsch synthesis , 2017 .

[6]  Mbongiseni W. Dlamini,et al.  Effects of Co and Ru Intimacy in Fischer–Tropsch Catalysts Using Hollow Carbon Sphere Supports: Assessment of the Hydrogen Spillover Processes , 2017 .

[7]  W. Shafer,et al.  Fischer–Tropsch synthesis: effect of ammonia on product selectivities for a Pt promoted Co/alumina catalyst , 2017 .

[8]  Nimir O. Elbashir,et al.  Role of water-gas-shift reaction in Fischer–Tropsch synthesis on iron catalysts: A review , 2016 .

[9]  R. Schlögl,et al.  Higher Alcohol Synthesis Over Rh Catalysts: Conditioning of Rh/N-CNTs by Co and Mn Entrapped in the Support , 2016, Catalysis Letters.

[10]  Yi Zhang,et al.  Selectively forming light olefins via macroporous iron-based Fischer–Tropsch catalysts , 2016, Reaction Kinetics, Mechanisms and Catalysis.

[11]  A. Tavasoli,et al.  Cobalt supported on Graphene – A promising novel Fischer–Tropsch synthesis catalyst , 2015 .

[12]  N. Abas,et al.  Review of fossil fuels and future energy technologies , 2015 .

[13]  Gábor Lente,et al.  Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks , 2015 .

[14]  Jianliang Wang,et al.  Projection of world fossil fuels by country , 2015 .

[15]  G. Jacobs,et al.  CO-insertion mechanism based kinetic model of the Fischer–Tropsch synthesis reaction over Re-promoted Co catalyst , 2014 .

[16]  M. Housaindokht,et al.  The olefin to paraffin ratio as a function of catalyst particle size in Fischer–Tropsch synthesis by iron catalyst , 2013 .

[17]  Weiyong Ying,et al.  The comprehensive kinetics of Fischer–Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism , 2013 .

[18]  S. Farzad,et al.  Comprehensive study of nanostructured supports with high surface area for Fischer-Tropsch synthesis , 2013 .

[19]  A. Haghtalab,et al.  PRODUCT DISTRIBUTION OF FISCHER-TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR BASED ON LANGMUIR-FREUNDLICH ISOTHERM , 2013 .

[20]  Mehdi Shiva,et al.  The application of hybrid DOE/ANN methodology in lumped kinetic modeling of Fischer–Tropsch reaction , 2013 .

[21]  G. Froment,et al.  Kinetic Model of Fischer–Tropsch Synthesis in a Slurry Reactor on Co–Re/Al2O3 Catalyst , 2013 .

[22]  F. Khorasheh,et al.  Thermal Degradation Behavior and Kinetic Analysis of Ultra High Molecular Weight Polyethylene Based Multi-Walled Carbon Nanotube Nanocomposites Prepared Via in-situ Polymerization , 2012 .

[23]  Y. Liu,et al.  Product distributions including hydrocarbon and oxygenates of Fischer–Tropsch synthesis over mesoporous MnO2-supported Fe catalyst , 2012 .

[24]  A. Dalai,et al.  Kinetics study on cnt-supported RuKCo FTS catalyst in a fixed bed reactor , 2011 .

[25]  Nimir O. Elbashir,et al.  Development of a Kinetic Model for Supercritical Fluids Fischer−Tropsch Synthesis , 2011 .

[26]  Y. Zamani,et al.  Intrinsic kinetics of Fischer–Tropsch reactions over an industrial Co–Ru/γ-Al2O3 catalyst in slurry phase reactor , 2009 .

[27]  Nicolas Abatzoglou,et al.  Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer–Tropsch synthesis , 2009 .

[28]  Ahmad Tavasoli,et al.  Cobalt supported on carbon nanotubes — A promising novel Fischer–Tropsch synthesis catalyst , 2008 .

[29]  Ali Haghtalab,et al.  Fischer‐Tropsch Synthesis Over Co‐Ru/γ‐Al2O3 Catalyst in Supercritical Media , 2008 .

[30]  R. Zennaro,et al.  Development of a complete kinetic model for the Fischer-Tropsch synthesis over Co/Al2O3 catalysts , 2007 .

[31]  Hongwei Xiang,et al.  Kinetic modeling of Fischer–Tropsch synthesis over Fe–Cu–K–SiO2Fe–Cu–K–SiO2 catalyst in slurry phase reactor , 2007 .

[32]  Ying Liu,et al.  A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst , 2006 .

[33]  G. V. D. Laan,et al.  Hydrocarbon selectivity model for the gas-solid Fischer-Tropsch synthesis on precipitated iron catalysts , 1999 .

[34]  M. Dry Catalytic aspects of industrial Fischer-Tropsch synthesis , 1982 .

[35]  Alexis T. Bell,et al.  The kinetics and mechanism of carbon monoxide hydrogenation over alumina-supported ruthenium , 1981 .

[36]  Amir Mosayebi,et al.  The comprehensive kinetic modeling of the Fischer–Tropsch synthesis over Co@Ru/γ-Al2O3 core–shell structure catalyst , 2015 .