Microalgal drying and cell disruption--recent advances.

Production of intracellular metabolites or biofuels from algae involves various processing steps, and extensive work on laboratory- and pilot-scale algae cultivation, harvesting and processing has been reported. As algal drying and cell disruption are integral processes of the unit operations, this review examines recent advances in algal drying and disruption for nutrition or biofuel production. Challenges and prospects of the processing are also outlined. Engineering improvements in addressing the challenges of energy efficiency and cost-effective and rigorous techno-economic analyses for a clearer prospect comparison between different processing methods are highlighted. Holistic life cycle assessments need to be conducted in assessing the energy balance and the potential environmental impacts of algal processing. The review aims to provide useful information for future development of efficient and commercially viable algal food products and biofuels production.

[1]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[2]  Jo‐Shu Chang,et al.  Microalgae-based carbohydrates for biofuel production , 2013 .

[3]  S. Schwede,et al.  Influence of Different Cell Disruption Techniques on Mono Digestion of Algal Biomass , 2011 .

[4]  . T.O.S.Popoola,et al.  Extraction, Properties and Utilization Potentials of Cassava Seed Oil , 2006 .

[5]  Roberto E. Armenta,et al.  Developments in oil extraction from microalgae. , 2011 .

[6]  Panyue Zhang,et al.  Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. , 2009, Ultrasonics sonochemistry.

[7]  Stefano Mantegna,et al.  Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. , 2008, Ultrasonics sonochemistry.

[8]  M. D. Werst,et al.  Electrically dewatering microalgae , 2011, IEEE Transactions on Dielectrics and Electrical Insulation.

[9]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[10]  Duu-Jong Lee,et al.  Microalgae-based biorefinery--from biofuels to natural products. , 2013, Bioresource technology.

[11]  A. Young,et al.  Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability , 2001, Journal of Applied Phycology.

[12]  Y. Chisti,et al.  Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals , 2002, Critical reviews in biotechnology.

[13]  Paul Jelen,et al.  Methods for disruption of microbial cells for potential use in the dairy industry—a review , 2002 .

[14]  N. Sharif,et al.  HARVESTING AND PROCESSING OF MICROALGAE BIOMASS FRACTIONS FOR BIODIESEL PRODUCTION (A REVIEW) , 2013 .

[15]  K. Krisnangkura A simple method for estimation of cetane index of vegetable oil methyl esters , 1986 .

[16]  António F. Palavra,et al.  Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina)maxima: Comparison with organic solvent extraction , 2006 .

[17]  Michael K. Danquah,et al.  Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration , 2009 .

[18]  E. Talavera,et al.  Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruentum. Semipreparative high-performance liquid chromatographic separation and characterization of its subunits. , 2001, Journal of chromatography. A.

[19]  P. Bubrick Production of astaxanthin from Haematococcus , 1991 .

[20]  Jo‐Shu Chang,et al.  Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. , 2013, Bioresource technology.

[21]  Aikaterini Papazi,et al.  Harvesting Chlorella minutissima using cell coagulants , 2010, Journal of Applied Phycology.

[22]  H. Oh,et al.  Comparison of several methods for effective lipid extraction from microalgae. , 2010, Bioresource technology.

[23]  Michael J. Cooney,et al.  Extraction of Bio‐oils from Microalgae , 2009 .

[24]  Robert O. Dunn,et al.  Low-temperature properties of alkyl esters of tallow and grease , 1997 .

[25]  F. Yang,et al.  Preparative isolation and purification of lutein from the microalga chlorella vulgaris by high-speed counter-current chromatography. , 2001, Journal of chromatography. A.

[26]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[27]  S. Einbinder,et al.  Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. , 2012, Biotechnology advances.

[28]  D. Lewis,et al.  Force and energy requirement for microalgal cell disruption: an atomic force microscope evaluation. , 2013, Bioresource technology.

[29]  B. Jefferson,et al.  The Potential for Using Bubble Modification Chemicals in Dissolved Air Flotation for Algae Removal , 2009 .

[30]  Q. Hu,et al.  Harvesting algal biomass for biofuels using ultrafiltration membranes. , 2010, Bioresource technology.

[31]  Duu-Jong Lee,et al.  Algal biomass dehydration. , 2013, Bioresource technology.

[32]  A. Kiperstok,et al.  Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. , 2010, Bioresource technology.

[33]  P. Webley,et al.  Mechanical cell disruption for lipid extraction from microalgal biomass. , 2013, Bioresource technology.

[34]  Hongli Zheng,et al.  Harvesting of microalgae by flocculation with poly (γ-glutamic acid). , 2012, Bioresource technology.

[35]  Duu-Jong Lee,et al.  Lutein recovery from Chlorella sp. ESP-6 with coagulants. , 2013, Bioresource technology.

[36]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.

[37]  T. Chakrabarti,et al.  Enhanced algal CO(2) sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. , 2010, Bioresource technology.

[38]  D. Batten,et al.  Life cycle assessment of biodiesel production from microalgae in ponds. , 2011, Bioresource technology.

[39]  Arnaud Hélias,et al.  Life-cycle assessment of biodiesel production from microalgae. , 2009, Environmental science & technology.

[40]  P. Jaouen,et al.  Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae. , 2010 .

[41]  E. Belarbi,et al.  A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. , 2000, Enzyme and microbial technology.

[42]  G. Shelef,et al.  Microalgae harvesting and processing: a literature review , 1984 .

[43]  Duu-Jong Lee,et al.  Algal Biomass Harvesting , 2014 .

[44]  H. Pelham,et al.  Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. , 2000, Molecular biology of the cell.

[45]  Zhi-li Liu,et al.  The released polysaccharide of the cyanobacterium Aphanothece halophytica inhibits flocculation of the alga with ferric chloride , 2009, Journal of Applied Phycology.

[46]  Cheng Yuan,et al.  Mychonastes afer HSO-3-1 as a potential new source of biodiesel , 2011, Biotechnology for biofuels.

[47]  Jo‐Shu Chang,et al.  Dispersed ozone flotation of Chlorella vulgaris. , 2010, Bioresource technology.

[48]  Jo‐Shu Chang,et al.  Coagulation-membrane filtration of Chlorella vulgaris. , 2012, Bioresource technology.

[49]  Boudewijn Meesschaert,et al.  Flocculation of microalgae using cationic starch , 2009, Journal of Applied Phycology.

[50]  Jo‐Shu Chang,et al.  Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. , 2011, Bioresource technology.

[51]  R. Ruan,et al.  Novel Fungal Pelletization-Assisted Technology for Algae Harvesting and Wastewater Treatment , 2012, Applied Biochemistry and Biotechnology.

[52]  J. Doucha,et al.  Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers , 2008, Applied Microbiology and Biotechnology.

[53]  A. Tiehm,et al.  Enhancement of anaerobic sludge digestion by ultrasonic disintegration , 2000 .

[54]  Yusuf Chisti,et al.  Disruption of microbial cells for intracellular products , 1986 .

[55]  Duu-Jong Lee,et al.  Coagulation–Membrane Filtration of Chlorella vulgaris at Different Growth Phases , 2012 .

[56]  Y. Chisti,et al.  Recovery of microalgal biomass and metabolites: process options and economics. , 2003, Biotechnology advances.

[57]  S. Powtongsook,et al.  Optimization of chitosan flocculation for phytoplankton removal in shrimp culture ponds , 2009 .

[58]  M. Zhu,et al.  Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. , 2002, Bioresource technology.

[59]  Duu-Jong Lee,et al.  Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. , 2014, Bioresource technology.

[60]  Andres F. Clarens,et al.  Algae biodiesel has potential despite inconclusive results to date. , 2012, Bioresource technology.

[61]  S. Olsen,et al.  A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels , 2011 .

[62]  H. Oh,et al.  Rapid method for the determination of lipid from the green alga Botryococcus braunii , 1998 .

[63]  D. Lewis,et al.  Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements , 2012 .

[64]  S. Dentel Chemical Conditioning for Solid–Liquid Separation Processes , 2010 .

[65]  F Delrue,et al.  An economic, sustainability, and energetic model of biodiesel production from microalgae. , 2012, Bioresource technology.

[66]  H. Yeh,et al.  Effect of algal extracellular polymer substances on UF membrane fouling , 2010 .

[67]  Carl J. Soeder,et al.  Massive cultivation of microalgae: Results and prospects , 1980, Hydrobiologia.

[68]  R. Lovitt,et al.  Placing microalgae on the biofuels priority list: a review of the technological challenges , 2010, Journal of The Royal Society Interface.