Symbolic-Numerical Algorithm for Generating Interpolation Multivariate Hermite Polynomials of High-Accuracy Finite Element Method
暂无分享,去创建一个
Vladimir P. Gerdt | Ochbadrakh Chuluunbaatar | Sergey I. Vinitsky | Andrzej Gózdz | V. L. Derbov | Alexander Gusev | G. Chuluunbaatar | V. Gerdt | A. Gusev | O. Chuluunbaatar | S. Vinitsky | V. Derbov | A. Gózdz | G. Chuluunbaatar
[1] K. Bell. A refined triangular plate bending finite element , 1969 .
[2] R. Wait,et al. The finite element method in partial differential equations , 1977 .
[3] J. Marsden,et al. Tricubic interpolation in three dimensions , 2005 .
[4] K. E. Buck,et al. Some New Elements for the Matrix Displacement Method , 1968 .
[5] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[6] O. C. Zienkiewicz. FINITE ELEMENTS—THE BACKGROUND STORY , 1973 .
[7] H. Saunders,et al. Finite element procedures in engineering analysis , 1982 .
[8] Emmanuel Lefrançois,et al. Finite Element Method: Dhatt/Finite Element Method , 2012 .
[9] T. Sauer,et al. On the history of multivariate polynomial interpolation , 2000 .
[10] L. Ram-Mohan. Finite Element and Boundary Element Applications in Quantum Mechanics , 2002 .
[11] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[12] O. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physics , 1985 .
[14] Ron Goldman,et al. A recursive algorithm for Hermite interpolation over a triangular grid , 1996 .
[15] Ochbadrakh Chuluunbaatar,et al. Symbolic-Numerical Solution of Boundary-Value Problems with Self-adjoint Second-Order Differential Equation Using the Finite Element Method with Interpolation Hermite Polynomials , 2014, CASC.