Visualization of Vorticity and Vortices in Wall-Bounded Turbulent Flows

This study was initiated by the scientifically interesting prospect of applying advanced visualization techniques to gain further insight into various spatio-temporal characteristics of turbulent flows. The ability to study complex kinematical and dynamical features of turbulence provides means of extracting the underlying physics of turbulent fluid motion. The objective is to analyze the use of a vorticity field line approach to study numerically generated incompressible turbulent flows. In order to study the vorticity field, we present a field line animation technique that uses a specialized particle advection and seeding strategy. Efficient analysis is achieved by decoupling the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. Multifield visualizations are obtained using a flexible volume rendering framework, which is presented in this paper. Vorticity field lines have been employed as indicators to provide a means to identify "ejection" and "sweep" regions, two particularly important spatio-temporal events in wall-bounded turbulent flows. Their relation to the rate of turbulent kinetic energy production and viscous dissipation, respectively, has been identified.

[1]  Gordon Erlebacher,et al.  Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[2]  Werner Purgathofer,et al.  Animating flow fields: rendering of oriented line integral convolution , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[3]  MING JIANG,et al.  Detection and Visualization of Vortices , 2005, The Visualization Handbook.

[4]  Gordon Erlebacher,et al.  A texture-based framework for spacetime-coherent visualization of time-dependent vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[5]  F. Clauser The Structure of Turbulent Shear Flow , 1957, Nature.

[6]  T. Gjesdal,et al.  Application of a variational multiscale turbulence model in a high order spectral element flow solver , 2005 .

[7]  David S. Ebert,et al.  Volume Illustration: Nonphotorealistic Rendering of Volume Models , 2001, IEEE Trans. Vis. Comput. Graph..

[8]  R. Adrian,et al.  On the relationships between local vortex identification schemes , 2005, Journal of Fluid Mechanics.

[9]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[10]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[11]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[12]  Helwig Hauser,et al.  Smooth Brushing for Focus+Context Visualization of Simulation Data in 3D , 2002, WSCG.

[13]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[14]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[15]  Stefan Bruckner,et al.  Flexible direct multi-volume rendering in interactive scenes , 2004 .

[16]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[17]  Eric B. Lum,et al.  Feature-Enhanced Visualization of Multidimensional, Multivariate Volume Data Using Non-photorealistic Rendering Techniques , 2002 .

[18]  Randi J. Rost OpenGL shading language , 2004 .

[19]  Thomas Ertl,et al.  GPU-based Multi-Volume Rendering for the Visualization of Functional Brain Images , 2006, SimVis.

[20]  Steven A. Orszag,et al.  Intermittent vortex structures in homogeneous isotropic turbulence , 1990, Nature.

[21]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[22]  Andreas Sundquist Dynamic Line Integral Convolution for Visualizing Streamline Evolution , 2003, IEEE Trans. Vis. Comput. Graph..

[23]  Kwan-Liu Ma,et al.  Visualization of multidimensional, multivariate volume data using hardware-accelerated non-photorealistic rendering techniques , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[24]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[25]  Simon Stegmaier,et al.  Opening the can of worms: an exploration tool for vortical flows , 2005, VIS 05. IEEE Visualization, 2005..

[26]  Alexandru Telea,et al.  3D IBFV: hardware-accelerated 3D flow visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[27]  Victoria Interrante,et al.  Visualizing 3D Flow , 1998, IEEE Computer Graphics and Applications.

[28]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[29]  Thomas Ertl,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Real-time Advection and Volumetric Illumination for the Visualization of 3d Unsteady Flow , 2022 .

[30]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[31]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[32]  Øyvind Andreassen,et al.  Visualization of vector fields using seed LIC and volume rendering , 2004, IEEE Transactions on Visualization and Computer Graphics.

[33]  Thomas Elboth,et al.  High-Quality and Interactive Animations of 3D Time-Varying Vector Fields , 2006, IEEE Transactions on Visualization and Computer Graphics.

[34]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[35]  Charles D. Hansen,et al.  Visualization of intricate flow structures for vortex breakdown analysis , 2004, IEEE Visualization 2004.

[36]  Randima Fernando,et al.  The CG Tutorial: The Definitive Guide to Programmable Real-Time Graphics , 2003 .

[37]  Martin Rumpf,et al.  Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000, IEEE Trans. Vis. Comput. Graph..

[38]  Julia S. Mullen,et al.  Filter-based stabilization of spectral element methods , 2001 .

[39]  Etienne Parkinson,et al.  Vorticity based flow analysis and visualization for Pelton turbine design optimization , 2004, IEEE Visualization 2004.

[40]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[41]  Ivan Arce,et al.  Opening a Can of Worms , 2003 .

[42]  Philip John Morris,et al.  The structure of turbulent shear flow , 1971 .

[43]  Thor Gjesdal,et al.  Spectral element benchmark simulations of natural convection in two‐dimensional cavities , 2006 .

[44]  Jarke J. van Wijk,et al.  Image based flow visualization , 2002, ACM Trans. Graph..