Generation and acceleration of electron bunches from a plasma photocathode

Plasma waves generated in the wake of intense, relativistic laser1,2 or particle beams3,4 can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected5,6 or captured from the background plasma7,8. Here we demonstrate optically triggered injection9–11 and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical11 density down-ramp injection12–16 and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness17. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams.Electron bunches are generated and accelerated to relativistic velocities by tunnel ionization of neutral gas species in a plasma. This represents a step towards ultra-bright, high-emittance beams in laser-plasma accelerators.

[1]  P Krejcik,et al.  Ionization-induced electron trapping in ultrarelativistic plasma wakes. , 2007, Physical review letters.

[2]  P. Brijesh,et al.  Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators , 2012, 1201.1252.

[3]  Victor Malka,et al.  Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel , 2010 .

[4]  M. Tigner,et al.  Handbook of Accelerator Physics and Engineering , 2013 .

[5]  Two-pulse ionization injection into quasilinear laser wakefields. , 2013, Physical review letters.

[6]  California,et al.  Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator. , 2013, Physical review letters.

[7]  S. V. Bulanov,et al.  Particle injection into the wave acceleration phase due to nonlinear wake wave breaking , 1998 .

[8]  Wei Lu,et al.  Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator , 2007, Nature.

[9]  E. Esarey,et al.  Plasma electron trapping and acceleration in a plasma wake field using a density transition. , 2001, Physical review letters.

[10]  J. B. Rosenzweig,et al.  Charge and wavelength scaling of RF photoinjector designs , 2008 .

[11]  Eric Esarey,et al.  Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes , 2013, J. Comput. Phys..

[12]  Sergio De Nicola,et al.  The REsonant Multi-Pulse Ionization injection , 2017, 1708.04957.

[13]  Andrei Seryi,et al.  Plasma wakefield acceleration experiments at FACET , 2010 .

[14]  J. Cary,et al.  Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. , 2008, Physical review letters.

[15]  Simpson,et al.  Experimental observation of plasma wake-field acceleration. , 1988, Physical review letters.

[16]  S. Edstrom,et al.  Laser ionized preformed plasma at FACET , 2014 .

[17]  G. White,et al.  High-efficiency acceleration of an electron beam in a plasma wakefield accelerator , 2014, Nature.

[18]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[19]  Vladimir P. Krainov,et al.  Tunnel Ionization Of Complex Atoms And Atomic Ions In Electromagnetic Field , 1986, Other Conferences.

[20]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[21]  Chen,et al.  Acceleration of electrons by the interaction of a bunched electron beam with a plasma. , 1985, Physical review letters.

[22]  Dodd,et al.  Laser injection of ultrashort electron pulses into Wakefield plasma waves. , 1996, Physical review letters.

[23]  J. Rosenzweig,et al.  Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. , 2012, Physical review letters.

[24]  Eric Esarey,et al.  Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators , 2003 .

[25]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.

[26]  C. Geddes,et al.  Two-color laser-ionization injection. , 2014, Physical review letters.

[27]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[28]  Beam loading by distributed injection of electrons in a plasma wakefield accelerator. , 2014, Physical review letters.

[29]  A A Friesem,et al.  Holographic axilens: high resolution and long focal depth. , 1991, Optics letters.

[30]  Sébastien Boutet,et al.  Linac Coherent Light Source: The first five years , 2016 .

[31]  P. Norreys,et al.  Monoenergetic electronic beam production using dual collinear laser pulses. , 2008, Physical review letters.

[32]  Michael Litos,et al.  Hot spots and dark current in advanced plasma wakefield accelerators , 2016 .

[33]  J. Cary,et al.  VORPAL: a versatile plasma simulation code , 2004 .

[34]  J. Cary,et al.  Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams , 2017, Nature Communications.

[35]  David L. Bruhwiler,et al.  Optical plasma torch electron bunch generation in plasma wakefield accelerators , 2015 .