Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks

We explore the following fundamental question - how fast can information be collected from a wireless sensor network? We consider a number of design parameters such as, power control, time and frequency scheduling, and routing. There are essentially two factors that hinder efficient data collection - interference and the half-duplex single-transceiver radios. We show that while power control helps in reducing the number of transmission slots to complete a convergecast under a single frequency channel, scheduling transmissions on different frequency channels is more efficient in mitigating the effects of interference (empirically, 6 channels suffice for most 100-node networks). With these observations, we define a receiver-based channel assignment problem, and prove it to be NP-complete on general graphs. We then introduce a greedy channel assignment algorithm that efficiently eliminates interference, and compare its performance with other existing schemes via simulations. Once the interference is completely eliminated, we show that with half-duplex single-transceiver radios the achievable schedule length is lower-bounded by max(2nk − 1,N), where nk is the maximum number of nodes on any subtree and N is the number of nodes in the network. We modify an existing distributed time slot assignment algorithm to achieve this bound when a suitable balanced routing scheme is employed. Through extensive simulations, we demonstrate that convergecast can be completed within up to 50% less time slots, in 100-node networks, using multiple channels as compared to that with single-channel communication. Finally, we also demonstrate further improvements that are possible when the sink is equipped with multiple transceivers or when there are multiple sinks to collect data.

[1]  Ying Zhang,et al.  Distributed time-optimal scheduling for convergecast in wireless sensor networks , 2008, Comput. Networks.

[2]  T. Moscibroda,et al.  The Worst-Case Capacity of Wireless Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[3]  Mingyan Liu,et al.  Data-gathering wireless sensor networks: organization and capacity , 2003, Comput. Networks.

[4]  Gang Zhou,et al.  MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[5]  Richard Han,et al.  A node-centric load balancing algorithm for wireless sensor networks , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[6]  Vinayak S. Naik,et al.  A line in the sand: a wireless sensor network for target detection, classification, and tracking , 2004, Comput. Networks.

[7]  Youngmin Kim,et al.  Y-MAC: An Energy-Efficient Multi-channel MAC Protocol for Dense Wireless Sensor Networks , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[8]  Zhiming Wu,et al.  A TDMA scheduling scheme for many-to-one communications in wireless sensor networks , 2007, Comput. Commun..

[9]  Ju Wang,et al.  Scheduling for information gathering on sensor network , 2009, Wirel. Networks.

[10]  Tian He,et al.  Realistic and Efficient Multi-Channel Communications in Wireless Sensor Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[11]  Tamer A. ElBatt,et al.  Joint scheduling and power control for wireless ad hoc networks , 2002, IEEE Transactions on Wireless Communications.

[12]  L. R. Esau,et al.  On Teleprocessing System Design Part II: A Method for Approximating the Optimal Network , 1966, IBM Syst. J..

[13]  Bhaskar Krishnamachari,et al.  Enhancing the Data Collection Rate of Tree-Based Aggregation in Wireless Sensor Networks , 2008, 2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[14]  Sandeep K. S. Gupta,et al.  On tree-based convergecasting in wireless sensor networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[15]  Christos H. Papadimitriou,et al.  The complexity of the capacitated tree problem , 1978, Networks.