Supralinear Ca[2+] Signaling by Cooperative and Mobile Ca[2+] Buffering in Purkinje Neurons

[1]  W. N. Ross,et al.  Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. , 1992, Journal of neurophysiology.

[2]  H. Kasai Cytosolic Ca2+ gradients, Ca2+ binding proteins and synaptic plasticity , 1993, Neuroscience Research.

[3]  D. Tank,et al.  In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron: An Example of Chemical Computation , 1994, Science.

[4]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[5]  J. Falke,et al.  Molecular Tuning of Ion Binding to Calcium Signaling Proteins , 1994, Quarterly Reviews of Biophysics.

[6]  A. Konnerth,et al.  Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells , 1992, Nature.

[7]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[8]  D. Richards,et al.  Calcium binding by chick calretinin and rat calbindin D28k synthesised in bacteria. , 1993, European journal of biochemistry.

[9]  D. Linden The Return of the Spike Postsynaptic Action Potentials and the Induction of LTP and LTD , 1999, Neuron.

[10]  Isabel Llano,et al.  Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices , 1998, The Journal of physiology.

[11]  H. Kasai,et al.  Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers , 1994, Trends in Neurosciences.

[12]  Y. Miyashita,et al.  Kinetic Control of Multiple Forms of Ca2+ Spikes by Inositol Trisphosphate in Pancreatic Acinar Cells , 1999, The Journal of cell biology.

[13]  A Konnerth,et al.  Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Arthur Konnerth,et al.  A new class of synaptic response involving calcium release in dendritic spines , 1998, Nature.

[15]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[16]  S. Wang,et al.  Confocal imaging and local photolysis of caged compounds: Dual probes of synaptic function , 1995, Neuron.

[17]  H. Kasai,et al.  Multiple kinetic components and the Ca2+ requirements of exocytosis. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  I. Llano,et al.  High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. , 1996, The Journal of physiology.

[19]  G. Ellis‐Davies Synthesis of photosensitive EGTA derivatives , 1998 .

[20]  N. Al-Baldawi,et al.  Calcium diffusion coefficient in Myxicola axoplasm. , 1995, Cell calcium.

[21]  A. Marty,et al.  Calcium-induced calcium release in cerebellar purkinje cells , 1994, Neuron.

[22]  N. Hartell,et al.  Strong Activation of Parallel Fibers Produces Localized Calcium Transients and a Form of LTD That Spreads to Distant Synapses , 1996, Neuron.

[23]  T. Robbins,et al.  Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Ohmori,et al.  Voltage-gated and synaptic currents in rat Purkinje cells in dissociated cell cultures. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Iino,et al.  Allosteric regulation by cytoplasmic Ca2+ and IP3 of the gating of IP3 receptors in permeabilized guinea‐pig vascular smooth muscle cells , 1998, The Journal of physiology.

[26]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[27]  J. Connor,et al.  Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. , 1988, Cell calcium.

[28]  E Neher,et al.  Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. , 1993, The Journal of physiology.

[29]  A. Marty,et al.  Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents , 1991, Neuron.

[30]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[31]  T. Ishii,et al.  Release of Ca2+ is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat. , 1996, The Journal of physiology.

[32]  A Konnerth,et al.  Ryanodine receptor‐mediated intracellular calcium release in rat cerebellar Purkinje neurones. , 1995, The Journal of physiology.

[33]  Y. Miyashita,et al.  Kinetic diversity in the fusion of exocytotic vesicles , 1997, The EMBO journal.

[34]  J. Watras,et al.  Inositol 1,4,5-Trisphosphate (InsP3) and Calcium Interact to Increase the Dynamic Range of InsP3 Receptor-dependent Calcium Signaling , 1997, The Journal of general physiology.

[35]  H. Tatsumi,et al.  Regulation of the intracellular free calcium concentration in acutely dissociated neurones from rat nucleus basalis. , 1993, The Journal of physiology.

[36]  William M. Roberts,et al.  Spatial calcium buffering in saccular hair cells , 1993, Nature.

[37]  N. Heintz,et al.  A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Miller,et al.  Calcium-binding protein distribution in the rat brain , 1982, Brain Research.

[39]  A. Konnerth,et al.  Fractional contribution of calcium to the cation current through glutamate receptor channels , 1993, Neuron.

[40]  M. Tachibana,et al.  Ca2+ regulation in the presynaptic terminals of goldfish retinal bipolar cells. , 1995, The Journal of physiology.

[41]  T. Hirano Effects of postsynaptic depolarization in the induction of synaptic depression between a granule cell and a Purkinje cell in rat cerebellar culture , 1990, Neuroscience Letters.

[42]  Y. Miyashita,et al.  Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells , 1997, The EMBO journal.

[43]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[44]  M. Mattson,et al.  Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-1328k in cultured hippocampal neurons , 1991, Neuron.

[45]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[46]  D. Swandulla,et al.  Calcium buffering in bursting Helix pacemaker neurons , 1993, Pflügers Archiv.

[47]  R. Miller,et al.  Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. , 1993, The Journal of physiology.

[48]  M. Sakurai Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[50]  B. Hille,et al.  Calcium homeostasis in identified rat gonadotrophs. , 1994, The Journal of physiology.

[51]  G. Ellis‐Davies,et al.  Two-photon and UV-laser flash photolysis of the Ca2+ cage, dimethoxynitrophenyl-EGTA-4. , 1999, Cell calcium.

[52]  E Neher,et al.  Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. , 1997, Biophysical journal.

[53]  M. Kano,et al.  Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses , 1989, Neuroscience Research.

[54]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[55]  C. Heizmann,et al.  Changes in Ca2+-binding proteins in human neurodegenerative disorders , 1992, Trends in Neurosciences.

[56]  R. Tsien,et al.  Synergies and Coincidence Requirements between NO, cGMP, and Ca2+ in the Induction of Cerebellar Long-Term Depression , 1997, Neuron.

[57]  C. Koch,et al.  Linearized models of calcium dynamics: formal equivalence to the cable equation , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  R. Zucker,et al.  Multiple calcium-dependent processes related to secretion in bovine chromaffin cells , 1993, Neuron.

[59]  T. Kosaka,et al.  Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling , 2004, Experimental Brain Research.

[60]  M. Dickinson,et al.  A long-term depression of AMPA currents in cultured cerebellar purkinje neurons , 1991, Neuron.

[61]  K. Shibuki,et al.  Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum , 1991, Nature.

[62]  M. Adams,et al.  P-type calcium channels blocked by the spider toxin ω-Aga-IVA , 1992, Nature.

[63]  R. Thomas,et al.  Relationship between intracellular calcium and its muffling measured by calcium iontophoresis in snail neurones. , 1996, The Journal of physiology.

[64]  P. F. Baker,et al.  Uptake and binding of calcium by axoplasm isolated from giant axons of Loligo and Myxicola. , 1978, The Journal of physiology.

[65]  R. Kuwano,et al.  Molecular Cloning of cDNA to mRNA for a Cerebellar Spot 35 Protein , 1987, Journal of neurochemistry.

[66]  E Neher,et al.  Two-dimensional determination of the cellular Ca2+ binding in bovine chromaffin cells. , 1998, Biophysical journal.

[67]  J Midtgaard,et al.  Synaptic control of excitability in turtle cerebellar Purkinje cells. , 1989, The Journal of physiology.

[68]  O. Garaschuk,et al.  Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Konnerth,et al.  Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[70]  H. Thoenen,et al.  Vulnerability of Midbrain Dopaminergic Neurons in Calbindin‐D28k‐deficient Mice: Lack of Evidence for a Neuroprotective Role of Endogenous Calbindin in MPTPtreated and Weaver Mice , 1997, The European journal of neuroscience.

[71]  J. Calvet,et al.  The Purkinje cell dendritic tree: a computer-aided study of its development in the cat and in culture , 1985, Brain Research.