Polyethylene glycol capped nickel–zinc ferrite nanocomposites: structural, optical and magnetic properties suitable for hyperthermia applications

[1]  F. Ezema,et al.  Zinc ferrite nanoparticles capped with Gongronema latifolium for moderate hyperthermia applications , 2022, Applied Physics A.

[2]  E. Kiani,et al.  The effects of strontium ferrite micro-and nanoparticles on the microstructure, phase, magnetic properties, and electromagnetic waves absorption of graphene oxide-SrFe12O19-SiC aerogel nanocomposite , 2021, Journal of Magnetism and Magnetic Materials.

[3]  M. Perduca,et al.  Enhanced Cytotoxic Effect of TAT–PLGA-Embedded DOXO Carried by Biomimetic Magnetic Nanoparticles upon Combination with Magnetic Hyperthermia and Photothermia , 2021, Pharmaceutics.

[4]  P. P. Bardapurkar,et al.  Effect of silica matrix on structural, optical and electrical properties of Li0.5Fe2.5O4 nanoparticles , 2021 .

[5]  G. Iglesias,et al.  Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies , 2021, Nanomaterials.

[6]  E. Levei,et al.  Formation, Structure and Magnetic Properties of MFe2O4@SiO2 (M = Co, Mn, Zn, Ni, Cu) Nanocomposites , 2021, Materials.

[7]  M. Maaza,et al.  Biogenic synthesis enhanced structural, morphological, magnetic and optical properties of zinc ferrite nanoparticles for moderate hyperthermia applications , 2021, Journal of Nanoparticle Research.

[8]  M. Maaza,et al.  Calcination induced PEG-Ni-ZnO nanorod composite and its biomedical applications , 2020 .

[9]  D. Colangelo,et al.  Biomimetic Magnetite Nanoparticles as Targeted Drug Nanocarriers and Mediators of Hyperthermia in an Experimental Cancer Model , 2020, Cancers.

[10]  M. Maaza,et al.  The role of polyethylene glycol on the microstructural, magnetic and specific absorption rate in thermoablation properties of Mn-Zn ferrite nanoparticles by sol–gel protocol , 2020, European Polymer Journal.

[11]  M. Maaza,et al.  Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications , 2020 .

[12]  M. Bououdina,et al.  Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles , 2020 .

[13]  A. Ghasemi,et al.  The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol-gel method , 2019, Composites Part B: Engineering.

[14]  M. Maaza,et al.  Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study. , 2019, Journal of photochemistry and photobiology. B, Biology.

[15]  L. C. López-Cara,et al.  Biomimetic Magnetic Nanocarriers Drive Choline Kinase Alpha Inhibitor inside Cancer Cells for Combined Chemo-Hyperthermia Therapy , 2019, Pharmaceutics.

[16]  F. Ezema,et al.  Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications , 2019, Applied Nanoscience.

[17]  G. Iglesias,et al.  Enhancement of Magnetic Hyperthermia by Mixing Synthetic Inorganic and Biomimetic Magnetic Nanoparticles , 2019, Pharmaceutics.

[18]  H. G. Zhang,et al.  Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia , 2019, Journal of Alloys and Compounds.

[19]  Zhi Wang,et al.  Structure and magnetic properties correlated with cation distribution of Ni0.5-Mo Zn0.5Fe2O4 ferrites prepared by sol-gel auto-combustion method , 2018, Ceramics International.

[20]  Mangalaraja Ramalinga Viswanathan,et al.  Magnetocaloric Effect and Universal Curve Behavior in Superparamagnetic Zinc Ferrite Nanoparticles Synthesized via Microwave Assisted Co‐Precipitation Method , 2018 .

[21]  L. Barbu-Tudoran,et al.  Influence of cobalt ferrite content on the structure and magnetic properties of (CoFe 2 O 4 ) X (SiO 2 -PVA) 100-X nanocomposites , 2018 .

[22]  G. Iglesias,et al.  Hyperthermia-Triggered Gemcitabine Release from Polymer-Coated Magnetite Nanoparticles , 2018, Polymers.

[23]  M. Bououdina,et al.  Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles , 2018 .

[24]  G. Iglesias,et al.  Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties , 2017, Polymers.

[25]  A. Ghasemi,et al.  Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg 0.5-x Cu x Zn 0.5 Fe 2 O 4 nanoparticles prepared by the modified Pechini method , 2017 .

[26]  A. Kermanpur,et al.  Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications , 2017 .

[27]  Mukhtar Ahmad,et al.  Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications , 2017 .

[28]  F. Hyder,et al.  Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications. , 2016, Materials letters.

[29]  J. Stebbing,et al.  Hyperthermia in cancer: is it coming of age? , 2014, The Lancet. Oncology.

[30]  Lorenzo Leija Salas,et al.  High Temperature Hyperthermia in Breast Cancer Treatment , 2013 .

[31]  G. Szigeti,et al.  Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy , 2013, Evidence-based complementary and alternative medicine : eCAM.

[32]  B. G. Davis,et al.  High-purity discrete PEG-oligomer crystals allow structural insight. , 2009, Angewandte Chemie.

[33]  Bahram Goliaei,et al.  Hyperthermia induces differentiation without apoptosis in permissive temperatures in human erythroleukaemia cells , 2007, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[34]  J. Zee,et al.  Heating the patient: a promising approach? , 2002 .

[35]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[36]  J. Zee Heating the patient : a promising approach ? , 2002 .

[37]  R. Issels,et al.  Hyperthermia in oncology. , 2001, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[38]  D. Shah,et al.  Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions , 1996 .