A Landau’s theorem in several complex variables

In one complex variable, it is well known that if we consider the family of all holomorphic functions on the unit disc that fix the origin and with first derivative equal to 1 at the origin, then there exists a constant $$\rho $$ρ, independent of the functions, such that in the image of the unit disc of any of the functions of the family, there is a disc of universal radius $$\rho $$ρ. This is the so celebrated Landau’s theorem. Many counterexamples to an analogous result in several complex variables exist. In this paper, we introduce a class of holomorphic maps for which one can get a Landau’s theorem and a Brody–Zalcman theorem in several complex variables.

[1]  R. Brody Compact manifolds in hyperbolicity , 1978 .

[2]  Dror Varolin,et al.  BLOCH CONSTANTS IN ONE AND SEVERAL VARIABLES , 1996 .

[3]  Gabriela Kohr,et al.  Geometric Function Theory in One and Higher Dimensions , 2003 .

[4]  E. Landau Über die Blochsche Konstante und zwei verwandte Weltkonstanten , 1929 .

[5]  Lawrence Zalcman,et al.  Normal families: New perspectives , 1998 .

[6]  Xiang Liu Bloch functions of several complex variables , 1992 .

[7]  C. Stoppato,et al.  The Schwarz-Pick lemma for slice regular functions , 2012, 1209.2060.

[8]  G. Gentili,et al.  On the Geometry of the Quaternionic Unit Disc , 2011 .

[9]  C. Stoppato,et al.  Regular vs. Classical Möbius Transformations of the Quaternionic Unit Ball , 2012, 1209.2351.

[10]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[11]  C. Stoppato,et al.  Landau’s theorem for slice regular functions on the quaternionic unit ball , 2017, 1701.08112.

[12]  L. Harris On the size of balls covered by analytic transformations , 1977 .

[13]  H. Chen,et al.  Bloch constants in several variables , 2000 .

[14]  Lawrence Zalcman,et al.  A Heuristic Principle in Complex Function Theory , 1975 .

[15]  H. Wu Normal families of holomorphic mappings , 1967 .

[16]  K. T. Hahn Higher dimensional generalizations of the Bloch constant and their lower bounds , 1973 .

[17]  R. Miniowitz Normal families of quasimeromorphic mappings , 1982 .

[18]  Graziano Gentili,et al.  M\"obius transformations and the Poincar\'e distance in the quaternionic setting , 2008, 0805.0357.

[19]  W. Rudin,et al.  Distortion in several variables , 1986 .

[20]  C. FitzGerald,et al.  The Bloch theorem in several complex variables , 1994 .

[21]  J. Fornæss,et al.  Regular holomorphic images of balls , 1982 .

[22]  W. Groß Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie , 1917 .