Normal bounds for subdivision-surface interference detection

Subdivision surfaces are an attractive representation when modeling arbitrary-topology free-form surfaces and show great promise for applications in engineering design and computer animation. Interference detection is a critical tool in many of these applications. In this paper, we derive normal bounds for subdivision surfaces and use these to develop an efficient algorithm for (self-) interference detection.

[1]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[2]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[3]  Dinesh Manocha,et al.  I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.

[4]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[5]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[6]  John M. Snyder,et al.  Interval methods for multi-point collisions between time-dependent curved surfaces , 1993, SIGGRAPH.

[7]  Henning Biermann,et al.  Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.

[8]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[9]  M. Hohmeyer,et al.  Robust and Efficient Surface Intersection for Solid Modeling , 1992 .

[10]  Dinesh Manocha,et al.  Efficient and accurate interference detection for polynomial deformation , 1996, Proceedings Computer Animation '96.

[11]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[12]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[13]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[14]  Dinesh Manocha,et al.  An efficient surface intersection algorithm based on lower-dimensional formulation , 1997, TOGS.

[15]  Thomas W. Sederberg,et al.  Loop detection in surface patch intersections , 1988, Comput. Aided Geom. Des..

[16]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[17]  Dinesh Manocha,et al.  Incremental Algorithms for Collision Detection Between Polygonal Models , 1997, IEEE Trans. Vis. Comput. Graph..

[18]  Nadia Magnenat-Thalmann,et al.  Efficient self‐collision detection on smoothly discretized surface animations using geometrical shape regularity , 1994, Comput. Graph. Forum.

[19]  John Platt,et al.  Heating and melting deformable models (from goop to glop) , 1989 .

[20]  Yuan-Shin Lee,et al.  Detection of loops and singularities of surface intersections , 1998, Comput. Aided Des..

[21]  Xavier Provot,et al.  Collision and self-collision handling in cloth model dedicated to design garments , 1997, Computer Animation and Simulation.

[22]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[24]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[25]  Deok-Soo Kim,et al.  Tangent, normal, and visibility cones on Bézier surfaces , 1995, Comput. Aided Geom. Des..

[26]  Marc Daniel,et al.  Using a Convex Pyramid to Bound Surface Normal Vectors , 1996, Comput. Graph. Forum.

[27]  Michael E. Hohmeyer A surface intersection algorithm based on loop detection , 1991, Int. J. Comput. Geom. Appl..

[28]  Dinesh Manocha,et al.  Rapid and Accurate Contact Determination between Spline Models using ShellTrees , 1998, Comput. Graph. Forum.

[29]  Thomas W. Sederberg,et al.  Pyramids That Bound Surface Patches , 1996, CVGIP Graph. Model. Image Process..

[30]  John Fitch,et al.  Course notes , 1975, SIGS.

[31]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[32]  Nadia Magnenat-Thalmann,et al.  Versatile and efficient techniques for simulating cloth and other deformable objects , 1995, SIGGRAPH.

[33]  Peter Schröder,et al.  Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..

[34]  Taosong He,et al.  Fast collision detection using QuOSPO trees , 1999, SI3D.

[35]  Ming C. Lin,et al.  Collision Detection between Geometric Models: A Survey , 1998 .