Recent progress and remaining challenges in organometallic halides based perovskite solar cells

Abstract The efficiency of perovskite solar cells (PSCs), based on thin film organometallic halides/mixed-halides, has rapidly increased from 3.8% in 2009 to 20.1% by 2015. Enhanced efficiency as well as the flexibility in material development and the structure are the primary reasons for their emergence in the photovoltaic market. Inherently distinctive properties of perovskite materials are mainly responsible for the enhanced efficiency. A variety of different techniques and device architecture have been employed for the fabrication of high-performance perovskite solar cells. As many parameters can be optimized, the efficiency of these devices can be further improved. This review highlights the intrinsic properties of lead halide perovskites and the recent progress in the application of these novel materials in producing efficient solar cells. Key factors affecting their solar performance are also highlighted. Scope and the need for lead free halide perovskites are also discussed.

[1]  D. Cahen,et al.  All-solid-state, semiconductor-sensitized nanoporous solar cells. , 2012, Accounts of chemical research.

[2]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[3]  Robert L. Jaffe,et al.  Pathways for solar photovoltaics , 2015 .

[4]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[5]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[6]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[7]  R. Tilton,et al.  Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. , 2012, Journal of colloid and interface science.

[8]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[9]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[10]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[11]  Rajan Jose,et al.  Progress, challenges and perspectives in flexible perovskite solar cells , 2016 .

[12]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[13]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[14]  P. Strange,et al.  Understanding the valency of rare earths from first-principles theory , 1999, Nature.

[15]  Sheng-Hui Chen,et al.  Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment , 2015 .

[16]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[17]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[18]  Jinhua Ye,et al.  Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays , 2013, Scientific Reports.

[19]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[20]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[21]  Oscar Miguel,et al.  Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact , 2014 .

[22]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[23]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[24]  A. Walsh Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[25]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[26]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[27]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[28]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[29]  N. Zheng,et al.  Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[30]  A. Goriely,et al.  Controlling coverage of solution cast materials with unfavourable surface interactions , 2014 .

[31]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[32]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[33]  B. S. Swain,et al.  3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. , 2014, Nanoscale.

[34]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[35]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[36]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[37]  Yaoguang Rong,et al.  Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. , 2014, The journal of physical chemistry letters.

[38]  Kiyoyuki Terakura,et al.  Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. , 2011, Dalton transactions.

[39]  F. Bechstedt,et al.  Structure, energetics, and electronic states of III–V compound polytypes , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  E. Sargent,et al.  Halide-Dependent Electronic Structure of Organolead Perovskite Materials , 2015 .

[41]  I. Hussein,et al.  Improving the efficiency of dye sensitized solar cells by TiO2-graphene nanocomposite photoanode , 2015 .

[42]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[43]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[44]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[45]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[46]  Qi Chen,et al.  Perovskite solar cells: film formation and properties , 2015 .

[47]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[48]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[49]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[50]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[51]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[52]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[53]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[54]  I. Hussein,et al.  Hybrid TiO2–multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs) , 2015 .

[55]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[56]  Luzhou Chen,et al.  The efficiency limit of CH3NH3PbI3 perovskite solar cells , 2015 .

[57]  M. Akabas,et al.  5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals , 2011, The Journal of general physiology.

[58]  Guangda Niu,et al.  Multifunctional perovskite capping layers in hybrid solar cells , 2014 .

[59]  J. M. Gardner,et al.  Structure and function relationships in alkylammonium lead(II) iodide solar cells , 2015 .

[60]  K. Asai,et al.  Electronic structures of lead iodide based low-dimensional crystals , 2003 .

[61]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[62]  V. Dutta,et al.  Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4:Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells , 2014 .

[63]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[64]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[65]  M. Kanatzidis,et al.  Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. , 2014, Journal of the American Chemical Society.

[66]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[67]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[68]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[69]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[70]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[71]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[72]  A. Walsh,et al.  The origin of the stereochemically active Pb(II) lone pair : DFT calculations on PbO and PbS , 2005 .

[73]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[74]  Michael J. Heben,et al.  Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications , 2016 .

[75]  K. Butler,et al.  Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 , 2015 .

[76]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[77]  Wei Zhang,et al.  Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. , 2015, Angewandte Chemie.

[78]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[79]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[80]  Hao Gao,et al.  Hole-transport-material-free perovskite solar cells based on nanoporous gold back electrode , 2015 .

[81]  A. Walsh,et al.  Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. , 2011, Chemical Society reviews.

[82]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[83]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[84]  M. Grätzel,et al.  Thermal Behavior of Methylammonium Lead- trihalide Perovskite Photovoltaic Light Harvesters , 2014 .

[85]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[86]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[87]  Peng Chen,et al.  Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. , 2016, ACS nano.

[88]  Endre Horváth,et al.  Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[89]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[90]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[91]  Giampiero Ruani,et al.  Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. , 2014, Physical chemistry chemical physics : PCCP.

[92]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[93]  Kun Zhang,et al.  Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition , 2014 .

[94]  S. Singh,et al.  Perovskite solar cells based on small molecule hole transporting materials , 2015 .

[95]  Yanhong Luo,et al.  Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property , 2014 .

[96]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[97]  M. Kaltenbrunner,et al.  Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer , 2016 .

[98]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[99]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[100]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[101]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[102]  T. Ma,et al.  Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell , 2016 .

[103]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[104]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[105]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[106]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[107]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[108]  Jin Young Kim,et al.  Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. , 2014, Nanoscale.

[109]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[110]  Jian Shi,et al.  Discovering lead-free perovskite solar materials with a split-anion approach. , 2016, Nanoscale.

[111]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[112]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[113]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[114]  F. H. Mischgofsky,et al.  Layer perovskites of the (CnH2n+1NH3)2MX4 and NH3(CH2)mNH3MX4 families with M = Cd, Cu, Fe, Mn OR Pd and X = Cl OR Br: Importance, solubilities and simple growth techniques , 1978 .

[115]  Henry J. Snaith,et al.  Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells , 2014 .

[116]  Dae Ho Song,et al.  Recent Progress of Innovative Perovskite Hybrid Solar Cells , 2015 .

[117]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[118]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[119]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[120]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[121]  John Byrne,et al.  High efficiency photovoltaics: on the way to becoming a major electricity source , 2012 .