An Information Theoretic Interpretation to Deep Neural Networks
暂无分享,去创建一个
Xiangxiang Xu | Shao-Lun Huang | Lizhong Zheng | Gregory W. Wornell | Shao-Lun Huang | Lizhong Zheng | G. Wornell | Xiangxiang Xu
[1] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[2] Andrew Zisserman,et al. Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.
[3] F. Alajaji,et al. Lectures Notes in Information Theory , 2000 .
[4] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[5] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[6] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[7] Naftali Tishby,et al. Deep learning and the information bottleneck principle , 2015, 2015 IEEE Information Theory Workshop (ITW).
[8] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[9] François Chollet,et al. Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[10] Bo Chen,et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.
[11] Kilian Q. Weinberger,et al. Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[12] Michael S. Bernstein,et al. ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.
[13] Reza Modarres,et al. Measures of Dependence , 2011, International Encyclopedia of Statistical Science.
[14] Sergey Ioffe,et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.
[15] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[16] Shao-Lun Huang,et al. On Universal Features for High-Dimensional Learning and Inference , 2019, ArXiv.
[17] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[18] H. Hirschfeld. A Connection between Correlation and Contingency , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] H. Gebelein. Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .
[20] Yoshua Bengio,et al. Understanding intermediate layers using linear classifier probes , 2016, ICLR.
[21] L. Goddard. Information Theory , 1962, Nature.
[22] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[23] Sergey Ioffe,et al. Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[24] Léon Bottou,et al. Wasserstein GAN , 2017, ArXiv.