Aggregating Imprecise Linguistic Expressions

In this chapter, we propose a multi-person decision making procedure where agents judge the alternatives through linguistic expressions generated by an orderedfinitescaleoflinguisticterms(forinstance,'verygood','good','acceptable', 'bad', 'very bad'). If the agents are not confident about their opinions, they might use linguisticexpressionscomposedbyseveralconsecutivelinguisticterms(forinstance, 'betweenacceptableandgood').Theprocedureweproposeisbasedondistancesand it ranks order the alternatives taking into account the linguistic information provided by the agents. The main features and properties of the proposal are analyzed.

[1]  Alf Zimmer,et al.  Verbal Vs. Numerical Processing of Subjective Probabilities , 1983 .

[2]  Bernard Grofman,et al.  In situ and laboratory experiments on electoral law reform : French presidential elections , 2011 .

[3]  Da Ruan,et al.  A fuzzy-set approach to treat determinacy and consistency of linguistic terms in multi-criteria decision making , 2007, Int. J. Approx. Reason..

[4]  Núria Agell,et al.  A Qualitative Reasoning Approach to Measure Consensus , 2011, Consensual Processes.

[5]  José Luis García-Lapresta,et al.  A general class of simple majority decision rules based on linguistic opinions , 2006, Inf. Sci..

[6]  Ronald R. Yager,et al.  Centered OWA Operators , 2007, Soft Comput..

[7]  Rida Laraki,et al.  A theory of measuring, electing, and ranking , 2007, Proceedings of the National Academy of Sciences.

[8]  José Luis García-Lapresta,et al.  Linguistic-based voting through centered OWA operators , 2009, Fuzzy Optim. Decis. Mak..

[9]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[10]  Bonifacio Llamazares,et al.  A Social Choice Analysis of the Borda Rule in a General Linguistic Framework , 2010, Int. J. Comput. Intell. Syst..

[11]  Amnon Rapoport,et al.  Measuring the Vague Meanings of Probability Terms , 1986 .

[12]  Núria Agell,et al.  Measuring consensus in group decisions by means of qualitative reasoning , 2010, Int. J. Approx. Reason..

[13]  Douglas Muzzio,et al.  Approval voting , 1983 .

[14]  Slawomir Zadrozny,et al.  Computing with Words in Decision Making Through Individual and Collective Linguistic Choice Rules , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[15]  Núria Agell,et al.  Using consensus and distances between generalized multi-attribute linguistic assessments for group decision-making , 2014, Inf. Fusion.

[16]  José Luis García-Lapresta,et al.  A Distance-based Extension of the Majority Judgement Voting System , 2011 .

[17]  Yongchuan Tang,et al.  Linguistic modelling based on semantic similarity relation among linguistic labels , 2006, Fuzzy Sets Syst..

[18]  Francisco Herrera,et al.  Hesitant Fuzzy Linguistic Term Sets for Decision Making , 2012, IEEE Transactions on Fuzzy Systems.

[19]  Francisco Herrera,et al.  A 2-tuple fuzzy linguistic representation model for computing with words , 2000, IEEE Trans. Fuzzy Syst..

[20]  Dan S. Felsenthal,et al.  The Majority Judgement Voting Procedure : A Critical Evaluation 1 , 2009 .

[21]  José Luis García-Lapresta,et al.  Defining the Borda count in a linguistic decision making context , 2009, Inf. Sci..

[22]  Rajesh P. N. Rao,et al.  Decision Making Under Uncertainty: A Neural Model Based on Partially Observable Markov Decision Processes , 2010, Front. Comput. Neurosci..

[23]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[24]  M. A. Zahid A new framework for elections , 2012 .

[25]  Rida Laraki,et al.  Election by Majority Judgment: Experimental Evidence , 2011 .

[26]  Louise Travé-Massuyès,et al.  The Orders of Magnitude Models as Qualitative Algebras , 1989, IJCAI.