Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Analytical gradients

A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange‐correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn–Sham matrix formation. © 2016 Wiley Periodicals, Inc.

[1]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[2]  Jonas Boström,et al.  Analytical Gradients of Hartree-Fock Exchange with Density Fitting Approximations. , 2013, Journal of chemical theory and computation.

[3]  So Hirata,et al.  The analytical energy gradient scheme in the Gaussian based Hartree-Fock and density functional theory for two-dimensional systems using the fast multipole method , 2003 .

[4]  Dennis R. Salahub,et al.  Analytical gradient of the linear combination of Gaussian‐type orbitals—local spin density energy , 1989 .

[5]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[6]  P. Pulay,et al.  Direct Use of the Gradient for Investigating Molecular Energy Surfaces , 1977 .

[7]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[8]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[9]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[10]  Fast evaluation of the Coulomb energy for electron densities , 1997 .

[11]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[12]  Lukás Grajciar,et al.  Low‐memory iterative density fitting , 2015, J. Comput. Chem..

[13]  Anthony C. Hess,et al.  Gaussian basis density functional theory for systems periodic in two or three dimensions: Energy and forces , 1996 .

[14]  Martin Head-Gordon,et al.  Fractional tiers in fast multipole method calculations , 1996 .

[15]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[16]  Kazuhiro Ishida,et al.  Efficient determination and characterization of transition states using ab-initio methods , 1977 .

[17]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[18]  A. Köster,et al.  Double asymptotic expansion of three-center electronic repulsion integrals. , 2013, The Journal of chemical physics.

[19]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[20]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[21]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[22]  Yihan Shao,et al.  Efficient evaluation of the Coulomb force in density-functional theory calculations , 2001 .

[23]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[24]  Martin Head-Gordon,et al.  Auxiliary basis expansions for large-scale electronic structure calculations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Asbjörn M Burow,et al.  Linear Scaling Hierarchical Integration Scheme for the Exchange-Correlation Term in Molecular and Periodic Systems. , 2011, Journal of chemical theory and computation.

[26]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[27]  Asbjörn M. Burow,et al.  Resolution of identity approximation for the Coulomb term in molecular and periodic systems. , 2009, The Journal of chemical physics.

[28]  Frank Herman,et al.  Improved Statistical Exchange Approximation for Inhomogeneous Many-Electron Systems , 1969 .

[29]  Claudia Ambrosch-Draxl,et al.  Force calculation and atomic-structure optimization for the full-potential linearized augmented plane-wave code WIEN , 1995, mtrl-th/9511002.

[30]  Thomas Bredow,et al.  Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations , 2013, J. Comput. Chem..

[31]  Trygve Helgaker,et al.  A Lagrangian, integral-density direct formulation and implementation of the analytic CCSD and CCSD(T) gradients , 2003 .

[32]  Robert A. Evarestov,et al.  Quantum chemistry of solids , 2007 .

[33]  P. Čárský,et al.  Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis using the density fitting and Cholesky decomposition. , 2012, The Journal of chemical physics.

[34]  R. Bartlett,et al.  Analytical evaluation of energy derivatives in extended systems. I. Formalism , 1998 .

[35]  Trygve Helgaker,et al.  An efficient density-functional-theory force evaluation for large molecular systems. , 2010, The Journal of chemical physics.

[36]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[37]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[38]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[39]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[40]  J. Mintmire,et al.  Local-density-functional methods in two-dimensionally periodic systems. Hydrogen and beryllium monolayers , 1982 .

[41]  Jon Baker,et al.  The effect of grid quality and weight derivatives in density functional calculations , 1994 .

[42]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[43]  Gustavo E Scuseria,et al.  Revisiting infinite lattice sums with the periodic fast multipole method. , 2004, The Journal of chemical physics.

[44]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[45]  J. S. Binkley,et al.  Derivative studies in hartree-fock and møller-plesset theories , 2009 .

[46]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[48]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[49]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[50]  A. Alvarez-Ibarra,et al.  A new mixed self-consistent field procedure† , 2015 .

[51]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[52]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[53]  L. Visscher,et al.  Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting. , 2014, Journal of chemical theory and computation.

[54]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Gustavo E. Scuseria,et al.  A fast multipole method for periodic systems with arbitrary unit cell geometries , 1998 .

[57]  Christof Hättig,et al.  Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation , 2003 .

[58]  Andrew Komornicki,et al.  Molecular gradients and hessians implemented in density functional theory , 1993 .

[59]  Asbjörn M. Burow,et al.  Density Functional Theory for Molecular and Periodic Systems Using Density Fitting and Continuous Fast Multipole Methods. , 2015, Journal of chemical theory and computation.

[60]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[61]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[62]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[63]  Gustavo E. Scuseria,et al.  A fast multipole algorithm for the efficient treatment of the Coulomb problem in electronic structure calculations of periodic systems with Gaussian orbitals , 1998 .

[64]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[65]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[66]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[67]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[68]  T. Helgaker,et al.  Communication: Analytic gradients in the random-phase approximation. , 2013, The Journal of chemical physics.

[69]  Benny G. Johnson,et al.  An implementation of analytic second derivatives of the gradient‐corrected density functional energy , 1994 .

[70]  Parr,et al.  Phase-space approach to the exchange-energy functional of density-functional theory. , 1986, Physical review. A, General physics.

[71]  Dunlap,et al.  Local-density-functional total energy gradients in the linear combination of Gaussian-type orbitals method. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[72]  Asbjörn M Burow,et al.  Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation. , 2014, Journal of chemical theory and computation.

[73]  G. Scuseria,et al.  Analytic energy gradients for the Gaussian very fast multipole method (GvFMM) , 1996 .

[74]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[75]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[76]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[77]  Frank Neese,et al.  The ORCA program system , 2012 .

[78]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290) , 1995 .

[79]  Benny G. Johnson,et al.  Kohn—Sham density-functional theory within a finite basis set , 1992 .

[80]  Cedillo,et al.  New nonlocal exchange-energy functional from a kinetic-energy-density Padé-approximant model. , 1988, Physical review. A, General physics.