SYMBA: An end-to-end VLBI synthetic data generation pipeline

© 2020 ESO. Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.

F. Roelofs | M. Janssen | I. Natarajan | R. Deane | J. Davelaar | H. Olivares | O. Porth | S. N. Paine | K. L. Bouman | R. P. J. Tilanus | I. M. van Bemmel | H. Falcke | K. Akiyama | A. Alberdi | W. Alef | K. Asada | R. Azulay | A. Baczko | D. Ball | M. Balokovi'c | J. Barrett | D. Bintley | L. Blackburn | W. Boland | G. C. Bower | M. Bremer | C. D. Brinkerink | R. Brissenden | S. Britzen | A. E. Broderick | D. Broguiere | T. Bronzwaer | D. Byun | J. E. Carlstrom | A. Chael | C. Chan | S. Chatterjee | K. Chatterjee | M. Chen | Y. Chen | I. Cho | P. Christian | J. E. Conway | J. M. Cordes | G. B. Crew | Y. Cui | M. De Laurentis | J. Dempsey | G. Desvignes | J. Dexter | S. S. Doeleman | R. P. Eatough | V. L. Fish | E. Fomalont | R. Fraga-Encinas | P. Friberg | C. M. Fromm | J. L. G'omez | P. Galison | C. F. Gammie | R. Garc'ia | O. Gentaz | B. Georgiev | C. Goddi | R. Gold | M. Gu | M. Gurwell | K. Hada | M. H. Hecht | R. Hesper | L. C. Ho | P. Ho | M. Honma | C. L. Huang | L. Huang | D. H. Hughes | S. Ikeda | M. Inoue | S. Issaoun | D. J. James | B. T. Jannuzi | B. Jeter | W. Jiang | M. D. Johnson | S. Jorstad | T. Jung | M. Karami | R. Karuppusamy | T. Kawashima | G. K. Keating | M. Kettenis | J. Kim | M. Kino | J. Yi Koay | P. M. Koch | S. Koyama | M. Kramer | C. Kramer | T. P. Krichbaum | C. Kuo | T. R. Lauer | S. Lee | Y. Li | Z. Li | M. Lindqvist | R. Lico | K. Liu | E. Liuzzo | W. Lo | A. P. Lobanov | L. Loinard | C. Lonsdale | R. Lu | N. R. MacDonald | J. Mao | S. Markoff | D. P. Marrone | A. P. Marscher | I. Mart'i-Vidal | S. Matsushita | L. D. Matthews | L. Medeiros | K. M. Menten | Y. Mizuno | I. Mizuno | J. M. Moran | K. Moriyama | M. Moscibrodzka | C. Muller | H. Nagai | N. M. Nagar | M. Nakamura | R. Narayan | G. Narayanan | R. Neri | C. Ni | A. Noutsos | H. Okino | G. N. Ortiz-Le'on | T. Oyama | F. Ozel | D. C. M. Palumbo | N. Patel | U. Pen | D. W. Pesce | V. Pi'etu | R. Plambeck | A. PopStefanija | B. Prather | J. A. Preciado-L'opez | D. Psaltis | H. Pu | V. Ramakrishnan | R. Rao | M. G. Rawlings | A. W. Raymond | L. Rezzolla | B. Ripperda | A. Rogers | E. Ros | M. Rose | A. Roshanineshat | H. Rottmann | A. L. Roy | C. Ruszczyk | B. R. Ryan | K. L. J. Rygl | S. S'anchez | D. S'anchez-Arguelles | M. Sasada | T. Savolainen | F. Peter Schloerb | K. Schuster | L. Shao | Z. Shen | D. Small | B. Won Sohn | J. SooHoo | F. Tazaki | P. Tiede | M. Titus | K. Toma | P. Torne | T. Trent | S. Trippe | S. Tsuda | H. J. van Langevelde | D. R. van Rossum | J. Wagner | J. Wardle | D. Ward-Thompson | J. Weintroub | N. Wex | R. Wharton | M. Wielgus | G. N. Wong | Q. Wu | K. Young | Z. Younsi | F. Yuan | Y. Yuan | J. A. Zensus | G. Zhao | S. Zhao | Z. Zhu | Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | J. Carlstrom | P. Koch | L. Rezzolla | M. De Laurentis | C. Kramer | Kang Liu | K. Menten | R. Neri | M. D. Laurentis | P. Ho | C. Krämer | L. Blackburn | J. Cordes | E. Ros | M. Kino | S. Trippe | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | T. Jung | M. Inoue | F. Schloerb | Wen-han Jiang | S. Chatterjee | E. Fomalont | R. Narayan | A. Chael | Michael D. Johnson | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | R. Lu | A. Broderick | J. Moran | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | J. Zensus | R. Karuppusamy | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | K. Toma | M. Sasada | D. Pesce | P. Tiede | H. Pu | A. Marscher | S. Jorstad | U. Pen | I. Bemmel | D. Bintley | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | K. Liu | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | T. Bronzwaer | Chi-kwan Chan | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | O. Gentaz | B. Georgiev | M. Gu | K. Hada | S. Issaoun | M. Janssen | B. Jeter | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | J. Koay | S. Koyama | Yan-Rong Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | F. Ozel | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | B. Ryan | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | S. Tsuda | H. Langevelde | D. V. Rossum | N. Wex | R. Wharton | M. Wielgus | G. Wong | Z. Younsi | Ye-Fei Yuan | Shan-Shan Zhao | S. Paine | M. Kramer | A. Alberdi | H. V. van Langevelde | Z. Zhu | M. Chen | J. Conway | F. Özel | R. Rao | I. V. van Bemmel | D. V. van Rossum | P. Ho | R. Lu | R. Narayan | R. Lico | Y. Chen | J. Wagner | S. Ikeda | M. Janssen | L. Shao | S. Lee | S. Zhao | J. Kim | Y. Cui | Z. Li | E. Traianou | C. Chan | W. Jiang | C. Huang | E. Ros | M. Nakamura | D. Broguiere | B. Won Sohn | T. Krichbaum | Zhongqun Shen | G. Zhao | R. García | M. Nakamura | S. Koyama | R. Tilanus | M. Inoue | C. Goddi | G. Ortiz-Léon | Lijing Shao | J. Wagner | D. James | S. Paine | J. Cordes | Q. Wu | S. Doeleman | T. Oyama | G. Zhao | Fang Yuan | Y. Li | H. Nagai | M. Gu | C. Fromm | L. Ho | M. Kramer | A. Raymond | M. Kino | Y. Yuan | L. Ho | C. Kuo | Y. Mizuno | N. Patel | J. SooHoo | F. Yuan | J. Mao | Liang Huang | J. Gómez | M. Johnson | Z. Shen | O. Porth | L. Blackburn | L. Huang | A. W. Raymond | A. Rogers | M. Rose | K. Young | Qingwen Wu | Y. Yuan | K. Liu | David Ball | Shiro Ikeda | Aleksandar PopStefanija | R. García | D. James | Sang-Min Lee | Junjie Mao | David Sánchez-Arguelles | Zhaohuan Zhu | Olivier Gentaz | Britton Jeter | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | Roberto García | D. Hughes

[1]  Heino Falcke,et al.  General relativistic magnetohydrodynamical κ-jet models for Sagittarius A , 2017, 1712.02266.

[2]  Daniel P. Marrone,et al.  A GENERAL RELATIVISTIC NULL HYPOTHESIS TEST WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF THE BLACK HOLE SHADOW IN Sgr A* , 2014, 1411.1454.

[3]  H. F. Astrophysics,et al.  Probing the Magnetic Field Structure in on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations , 2016, 1601.05550.

[4]  J. Davelaar,et al.  RAPTOR I: Time-dependent radiative transfer in arbitrary spacetimes , 2018, 1801.10452.

[5]  Eric Agol,et al.  Viewing the Shadow of the Black Hole at the Galactic Center. , 2000 .

[6]  M. M. Phillips,et al.  Calibration of the Relationship between Precipitable Water Vapor and 225 GHz Atmospheric Opacity via Optical Echelle Spectroscopy at Las Campanas Observatory , 2007, 0706.2683.

[7]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[8]  P. P. Kronberg,et al.  Interferometric Measurement of Polarization Distribution in Radio Sources , 1969 .

[9]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[10]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[11]  Oleg M. Smirnov,et al.  Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects , 2011, 1101.1765.

[12]  F. Xiao,et al.  Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas , 2006 .

[13]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[14]  J. Davelaar,et al.  Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement , 2019, Astronomy & Astrophysics.

[15]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[16]  Charles F. Gammie,et al.  POLARIZED SYNCHROTRON EMISSIVITIES AND ABSORPTIVITIES FOR RELATIVISTIC THERMAL, POWER-LAW, AND KAPPA DISTRIBUTION FUNCTIONS , 2016, 1602.08749.

[17]  Charles F. Gammie,et al.  Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A , 2014, 1408.4743.

[18]  Kazunori Akiyama,et al.  Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling , 2017, 1702.00424.

[19]  K. Bouman,et al.  Dynamical Imaging with Interferometry , 2017, 1711.01286.

[20]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[21]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[22]  Katherine Freese,et al.  Apparent shape of super-spinning black holes , 2008, 0812.1328.

[23]  O. Smirnov,et al.  meqsilhouette: a mm-VLBI observation and signal corruption simulator , 2016, 1608.04521.

[24]  C. L. Carilli,et al.  Tropospheric phase calibration in millimeter interferometry , 1999 .

[25]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[26]  Sotiria Fotopoulou,et al.  Mosaiced wide-field VLBI observations of the Lockman Hole/XMM , 2012, 1212.4605.

[27]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[28]  Canadian Institute for Theoretical Astrophysics,et al.  DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI , 2008, 0809.3424.

[29]  Kazunori Akiyama,et al.  The Scattering and Intrinsic Structure of Sagittarius A* at Radio Wavelengths , 2018, The Astrophysical Journal.

[30]  Canada.,et al.  IMAGING THE SUPERMASSIVE BLACK HOLE SHADOW AND JET BASE OF M87 WITH THE EVENT HORIZON TELESCOPE , 2014, 1404.7095.

[31]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[32]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[33]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[34]  John P. Blakeslee,et al.  The inner halo of M 87: a first direct view of the red-giant population , 2010, 1009.3202.

[35]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[36]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[37]  Ayman Bin Kamruddin,et al.  A geometric crescent model for black hole images , 2013, 1306.3226.

[38]  R. W. Haas,et al.  Absolute calibration of millimeter-wavelength spectral lines , 1976 .

[39]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[40]  J. Bardeen Timelike and null geodesics in the Kerr metric. , 1973 .

[41]  Roger Cappallo,et al.  EHT-HOPS Pipeline for Millimeter VLBI Data Reduction , 2019, The Astrophysical Journal.

[42]  R. Jennison A Phase Sensitive Interferometer Technique for the Measurement of the Fourier Transforms of Spatial Brightness Distributions of Small Angular Extent , 1958 .

[43]  T. Bronzwaer,et al.  BlackHoleCam: Fundamental physics of the galactic center , 2016, 1606.08879.

[44]  Junhan Kim,et al.  Variability in GRMHD Simulations of Sgr : Implications for EHT Closure Phase Observations , 2016, 1610.03505.

[45]  Alan E. E. Rogers,et al.  The structure of radio sources 3C 273B and 3C 84 deduced from the "closure" phases and visibility amplitudes observed with three-element interferometers. , 1974 .

[46]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[47]  M. Lazar,et al.  Kappa Distributions: Theory and Applications in Space Plasmas , 2010, 1003.3532.

[48]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[49]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[50]  K. Bouman,et al.  HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE , 2016, 1605.06156.

[51]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[52]  Victor Pankratius,et al.  IMAGING AN EVENT HORIZON: MITIGATION OF SCATTERING TOWARD SAGITTARIUS A* , 2014, 1409.4690.

[53]  Kazunori Akiyama,et al.  MODELING SEVEN YEARS OF EVENT HORIZON TELESCOPE OBSERVATIONS WITH RADIATIVELY INEFFICIENT ACCRETION FLOW MODELS , 2016, 1602.07701.

[54]  Kazunori Akiyama,et al.  Interferometric Imaging Directly with Closure Phases and Closure Amplitudes , 2018, 1803.07088.

[55]  R. Kerr,et al.  Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .

[56]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES , 2010, 1005.1931.

[57]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[58]  Jean-Charles Cuillandre,et al.  The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond) , 2018, 1802.05526.

[59]  Oleg M. Smirnov,et al.  Revisiting the radio interferometer measurement equation. III. Addressing direction-dependent effects in 21 cm WSRT observations of 3C 147 , 2011, 1101.1768.

[60]  Urbana-Champaign,et al.  IMAGING AN EVENT HORIZON: MITIGATION OF SOURCE VARIABILITY OF SAGITTARIUS A* , 2015, 1512.08543.

[61]  Michael D. Johnson STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING , 2016, 1610.05326.

[62]  W. D. Cotton,et al.  Global fringe search techniques for VLBI , 1983 .

[63]  Harvard-Smithsonian Center for Astrophysics,et al.  The power of imaging: Constraining the plasma properties of grmhd simulations using eht observations of Sgr A∗ , 2014 .

[64]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[65]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[66]  Michael D. Johnson,et al.  THEORY AND SIMULATIONS OF REFRACTIVE SUBSTRUCTURE IN RESOLVED SCATTER-BROADENED IMAGES , 2015, 1502.05722.

[67]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[68]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[69]  Freek Roelofs,et al.  Quantifying Intrinsic Variability of Sagittarius A Using Closure Phase Measurements of the Event Horizon Telescope , 2017, 1708.01056.

[70]  Robert N. Treuhaft,et al.  The effect of the dynamic wet troposphere on radio interferometric measurements , 1987 .

[71]  Eugene Serabyn,et al.  Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications , 2001 .

[72]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[73]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[74]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[75]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[76]  Lindy Blackburn,et al.  rPICARD: A CASA-based calibration pipeline for VLBI data , 2019, Astronomy & Astrophysics.

[77]  O. Smirnov,et al.  The MeqTrees software system and its use for third-generation calibration of radio interferometers , 2010, 1101.1745.

[78]  M. Kerr,et al.  Locating the intense interstellar scattering towards the inner Galaxy , 2017, 1707.03842.

[79]  David Ball,et al.  Electron and Proton Acceleration in Trans-relativistic Magnetic Reconnection: Dependence on Plasma Beta and Magnetization , 2018, The Astrophysical Journal.

[80]  Alan E. E. Rogers,et al.  DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI , 2009 .