Spatially Balanced Sampling: A Review and A Reappraisal

Summary Spatially distributed data exhibit particular characteristics that should be considered when designing a survey of spatial units. Unfortunately, traditional sampling designs generally do not allow for spatial features, even though it is usually desirable to use information concerning spatial dependence in a sampling design. This paper reviews and compares some recently developed randomised spatial sampling procedures, using simple random sampling without replacement as a benchmark for comparison. The approach taken is design-based and serves to corroborate intuitive arguments about the need to explicitly integrate spatial dependence into sampling survey theory. Some guidance for choosing an appropriate spatial sampling design is provided, and some empirical evidence for the gains from using these designs with spatial populations is presented, using two datasets as illustrations.

[1]  Jinfeng Wang,et al.  A review of spatial sampling , 2012 .

[2]  Don L. Stevens,et al.  VARIABLE DENSITY GRID‐BASED SAMPLING DESIGNS FOR CONTINUOUS SPATIAL POPULATIONS , 1997 .

[3]  Roger Bivand,et al.  Comparing Implementations of Estimation Methods for Spatial Econometrics , 2015 .

[4]  Jorge Mateu,et al.  Optimal sampling for spatial prediction of functional data , 2016, Stat. Methods Appl..

[5]  Kenneth R. Driessel,et al.  Polygonal designs : some existence and non-existence results , 1999 .

[6]  M. Christman,et al.  A Review of Quadrat-Based Sampling of Rare, Geographically Clustered Populations , 2000 .

[7]  Yves Tillé,et al.  Ordered spatial sampling by means of the traveling salesman problem , 2016, Comput. Stat..

[8]  Lennart Bondesson,et al.  A List Sequential Sampling Method Suitable for Real‐Time Sampling , 2008 .

[9]  Achim Zeileis,et al.  Structured Additive Regression Models: An R Interface to BayesX , 2015 .

[10]  Yves Tillé,et al.  Incorporating spatial and operational constraints in the sampling designs for forest inventories , 2015 .

[11]  Ricardo A. Olea,et al.  Sampling design optimization for spatial functions , 1984 .

[12]  A. S. Hedayat,et al.  Sampling plans excluding contiguous units , 1988 .

[13]  Tony Olsen,et al.  Spatial Survey Design and Analysis , 2015 .

[14]  Roberto Benedetti,et al.  Optimal sampling designs for dependent spatial units , 1995 .

[15]  Isabel Molina,et al.  Small Area Estimation: Rao/Small Area Estimation , 2005 .

[16]  A. Olsen,et al.  Spatially Balanced Sampling of Natural Resources , 2004 .

[17]  Giuseppe Arbia,et al.  Anisotropic spatial sampling designs for urban pollution , 2002 .

[18]  C. T. Isaki,et al.  Survey Design under the Regression Superpopulation Model , 1982 .

[19]  J. Deville,et al.  Unequal probability sampling without replacement through a splitting method , 1998 .

[20]  Lennart Bondesson,et al.  An Extension of Sampford's Method for Unequal Probability Sampling , 2011 .

[21]  Giuseppe Arbia,et al.  The use of GIS in spatial surveys , 1993 .

[22]  Lucio Barabesi,et al.  Improved strategies for coverage estimation by using replicated line-intercept sampling , 2008, Environmental and Ecological Statistics.

[23]  Yves Tillé,et al.  Doubly balanced spatial sampling with spreading and restitution of auxiliary totals , 2013 .

[24]  Guillaume Chauvet,et al.  Optimal inclusion probabilities for balanced sampling , 2011 .

[25]  Yves Tillé,et al.  A fast algorithm for balanced sampling , 2006, Comput. Stat..

[26]  Anne-Catherine Favre,et al.  Calibrated random imputation for qualitative data , 2005 .

[27]  Yves Tillé,et al.  Variance approximation under balanced sampling , 2005 .

[28]  Lorenzo Fattorini,et al.  Applying the Horvitz-Thompson criterion in complex designs: A computer-intensive perspective for estimating inclusion probabilities , 2006 .

[29]  Anton Grafström,et al.  How to Select Representative Samples , 2014 .

[30]  Budiman Minasny,et al.  The variance quadtree algorithm: Use for spatial sampling design , 2007, Comput. Geosci..

[31]  B. N. Mandal,et al.  IPPS Sampling Plans Excluding Adjacent Units , 2008 .

[32]  Niklas L. P. Lundström,et al.  Why Well Spread Probability Samples Are Balanced , 2013 .

[33]  J. Deville,et al.  Efficient balanced sampling: The cube method , 2004 .

[34]  A. S. Hedayat,et al.  Sampling designs to control selection probabilities of contiguous units , 1998 .

[35]  Niklas L. P. Lundström,et al.  Spatially Balanced Sampling through the Pivotal Method , 2012, Biometrics.

[36]  John Stufken,et al.  New balanced sampling plans excluding adjacent units , 2008 .

[37]  Anton Grafström,et al.  Spatially correlated Poisson sampling , 2012 .

[38]  F. J. Breidt,et al.  Penalized balanced sampling , 2012 .

[39]  Liviu Theodor Ene,et al.  Efficient sampling strategies for forest inventories by spreading the sample in auxiliary space , 2014 .

[40]  Louis-Paul Rivest,et al.  A General Algorithm for Univariate Stratification , 2009 .

[41]  Don L. Stevens,et al.  Variance estimation for spatially balanced samples of environmental resources , 2003 .

[42]  Lucio Barabesi,et al.  Sampling properties of spatial total estimators under tessellation stratified designs , 2011 .