A modification of cagniard’s method for solving seismic pulse problems
暂无分享,去创建一个
[1] C. Pekeris,et al. SOLUTION OF AN INTEGRAL EQUATION OCCURRING IN IMPULSIVE WAVE PROPAGATION PROBLEMS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.
[2] Louis Cagniard,et al. Réflexion et réfraction des ondes séismiques progressives , 1939 .
[3] A. Maue. Die Entspannungswelle bei pltzlichem Einschnitt eines gespannten elastischen Krpers , 1954 .
[4] C. Pekeris. THE SEISMIC BURIED PULSE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[5] A. T. Hoop,et al. Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory , 1958 .
[6] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[7] Z. Alterman,et al. Radiation Resulting from an Impulsive Current in a Vertical Antenna Placed on a Dielectric Ground , 1957 .
[8] C. Pekeris,et al. Motion of the Surface of a Uniform Elastic Half‐Space Produced by a Buried Pulse , 1957 .
[9] I. M. Longman,et al. Ray‐Theory Solution of the Problem of Propagation of Explosive Sound in a Layered Liquid , 1958 .
[10] C. H. Dix. THE METHOD OF CAGNIARD IN SEISMIC PULSE PROBLEMS , 1954 .
[11] J. Miles. Homogeneous solutions in elastic wave propagation , 1960 .
[12] C. Pekeris,et al. THE SEISMIC SURFACE PULSE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.