Fault Detection in Combinational Networks by Reed-Muller Transforms

A new approach for fault detection in combinational networks based on Reed-Muller (RM) transforms is presented. An upper bound on the number of RM spectral coefficients required to be verified for detection of multiple stuck-at-faults and single bridging faults at the input lines of an n-input network is shown to be n. The time complexity (time required to test a network) for detection of multiple terminal faults and the storage required for storing the test are determined. An upper bound is found for the minimum number of test patterns required to detect a fault. The authors present standard tests based on this result, with a simple test generation procedure and upper bounds on minimal numbers of test patterns. >

[1]  Sudhakar M. Reddy,et al.  On the Detection of Terminal Stuck-Faults , 1978, IEEE Transactions on Computers.

[2]  Kozo Kinoshita,et al.  A Design of Programmable Logic Arrays with Universal Tests , 1981, IEEE Transactions on Computers.

[3]  Lawrence T. Fisher Unateness Properties of and-Exclusive-or Logic Circuits , 1974, IEEE Transactions on Computers.

[4]  Xia Chen,et al.  Mapping of Reed-Muller coefficients and the minimisation of exclusive OR-switching functions , 1982 .

[5]  William C. Carter,et al.  Signature Testing with Guaranteed Bounds for Fault Coverage , 1982, ITC.

[6]  Sheldon B. Akers,et al.  A parity bit signature for exhaustive testing , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Alfred K. Susskind,et al.  Testing by Verifying Walsh Coefficients , 1983, IEEE Transactions on Computers.

[8]  Mark G. Karpovsky,et al.  Spectral Techniques and Fault Detection , 1985 .

[9]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[10]  Sudhakar M. Reddy,et al.  Fault Detecting Test Sets for Reed-Muller Canonic Networks , 1975, IEEE Transactions on Computers.

[11]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[12]  Kewal K. Saluja,et al.  Minimization of Reed–Muller Canonic Expansion , 1979, IEEE Transactions on Computers.

[13]  D. Michael Miller,et al.  Spectral Fault Signatures for Internally Unate Combinational Networks , 1983, IEEE Transactions on Computers.

[14]  Ph. W. Besslich,et al.  SPECTRAL PROCESSING OF SWITCHING FUNCTIONS USING SIGNAL–FLOW TRANSFORMATIONS , 1985 .

[15]  D. Michael Miller,et al.  Spectral Fault Signatures for Single Stuck-At Faults in Combinational Networks , 1984, IEEE Transactions on Computers.

[16]  SUDHAKAR M. REDDY,et al.  Easily Testable Realizations ror Logic Functions , 1972, IEEE Transactions on Computers.