Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver.

BACKGROUND AND PURPOSE Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5mm in axial and 5-10mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). MATERIALS AND METHODS Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). RESULTS A decrease of TC to <95% was found in 3/60 simulations (5%) of pulmonary and 7/58 simulations (12%) of hepatic targets. In two of 22 pulmonary targets (9%) and in four of 21 hepatic targets (19%) a TC of <95% occurred in at least one fraction. At risk for a decreased TC <95% were pulmonary targets with increased breathing mobility and hepatic targets with a CTV exceeding 100 cm(3). CONCLUSIONS Target reproducibility was precise within the reference isodose in 91% of lung and 81% of liver tumors with a TC of the complete CTV >or=95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm(3) are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins.

[1]  F Lohr,et al.  Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. , 2000, International journal of radiation oncology, biology, physics.

[2]  J. Wong,et al.  The use of active breathing control (ABC) to reduce margin for breathing motion. , 1999, International journal of radiation oncology, biology, physics.

[3]  H Shirato,et al.  Three-dimensional movement of a liver tumor detected by high-speed magnetic resonance imaging. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[4]  I. Lax Target dose versus extratarget dose in stereotactic radiosurgery. , 1993, Acta oncologica.

[5]  H Shirato,et al.  Detection of lung tumor movement in real-time tumor-tracking radiotherapy. , 2001, International journal of radiation oncology, biology, physics.

[6]  K Nakagawa,et al.  Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms. , 2000, International journal of radiation oncology, biology, physics.

[7]  I. Lax,et al.  Extracranial Stereotactic Radiosurgery of Localized Targets , 1998 .

[8]  I. Lax,et al.  Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. , 1994, Acta oncologica.

[9]  Michael Flentje,et al.  Stereotactic Radiotherapy of Targets in the Lung and Liver , 2001, Strahlentherapie und Onkologie.

[10]  J. Wong,et al.  Daily positioning accuracy of frameless stereotactic radiation therapy with a fusion of computed tomography and linear accelerator (focal) unit: evaluation of z-axis with a z-marker. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  I. Lax,et al.  Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. , 1995, Acta oncologica.

[12]  G. Tsumatori,et al.  Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients , 1998, Cancer.

[13]  M Kono,et al.  Intrafractional tumor position stability during computed tomography (CT)-guided frameless stereotactic radiation therapy for lung or liver cancers with a fusion of CT and linear accelerator (FOCAL) unit. , 2000, International journal of radiation oncology, biology, physics.

[14]  U Oppitz,et al.  Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  M. Moerland,et al.  A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. , 1997, International journal of radiation oncology, biology, physics.

[16]  F. Lohr,et al.  Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  I. Lax,et al.  Radiosurgery for Tumors in the Body: Clinical Experience Using a New Method , 1998 .