Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits

Fault-tolerant quantum computing promises significant computational speedup over classical computing for a variety of important problems. One of the biggest challenges for realizing fault-tolerant quantum computing is preparing magic states with sufficiently low error rates. Magic state distillation is one of the most efficient schemes for preparing high-quality magic states. However, since magic state distillation circuits are not fault-tolerant, all the operations in the distillation circuits must be encoded in a large distance error-correcting code, resulting in a significant resource overhead. Here, we propose a fault-tolerant scheme for directly preparing high-quality magic states, which makes magic state distillation unnecessary. In particular, we introduce a concept that we call redundant ancilla encoding. The latter combined with flag qubits allows for circuits to both measure stabilizer generators of some code, while also being able to measure global operators to fault-tolerantly prepare magic states, all using nearest neighbor interactions. We apply such schemes to a planar architecture of the triangular color code family and demonstrate that our scheme requires at least an order of magnitude fewer qubits and space–time overhead compared to the most competitive magic state distillation schemes. Since our scheme requires only nearest-neighbor interactions in a planar architecture, it is suitable for various quantum computing platforms currently under development.

[1]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[2]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[3]  Kyungjoo Noh,et al.  Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[4]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[5]  Raymond Laflamme,et al.  Thresholds for Universal Concatenated Quantum Codes. , 2016, Physical review letters.

[6]  Ben W. Reichardt,et al.  Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits , 2018, Quantum Science and Technology.

[7]  Andrew W. Cross,et al.  Doubled Color Codes , 2015, 1509.03239.

[8]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[9]  Guanyu Zhu,et al.  Triangular color codes on trivalent graphs with flag qubits , 2019 .

[10]  Rui Chao,et al.  Fault-tolerant quantum computation with few qubits , 2017, npj Quantum Information.

[11]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[12]  Nicolas Delfosse,et al.  Efficient color code decoders in d≥2 dimensions from toric code decoders , 2019, Quantum.

[13]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[14]  Stephen D. Bartlett,et al.  Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout , 2015, 1509.04255.

[15]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[16]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[17]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[18]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[19]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[20]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[21]  Ying Li,et al.  A magic state’s fidelity can be superior to the operations that created it , 2014, New Journal of Physics.

[22]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[23]  Jeongwan Haah,et al.  Codes and Protocols for Distilling T, controlled-S, and Toffoli Gates , 2017, Quantum.

[24]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[25]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[26]  Aleksander Kubica,et al.  The ABCs of the Color Code: A Study of Topological Quantum Codes as Toy Models for Fault-Tolerant Quantum Computation and Quantum Phases Of Matter , 2018 .

[27]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[28]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[29]  Raymond Laflamme,et al.  Overhead analysis of universal concatenated quantum codes , 2016, 1609.07497.

[30]  Tomas Jochym-O'Connor,et al.  Fault-tolerant gates via homological product codes , 2018, Quantum.

[31]  Daniel Litinski,et al.  Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes , 2017, 1709.02318.

[32]  Andrew W. Cross,et al.  Fault-tolerant preparation of approximate GKP states , 2019, New Journal of Physics.

[33]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[34]  Atsushi Okamoto,et al.  High-threshold fault-tolerant quantum computation with analog quantum error correction , 2017, 1712.00294.

[35]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[36]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[37]  Andrew W. Cross,et al.  Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits , 2019, Physical Review X.

[38]  Yang Wang,et al.  Quantum error correction with the toric Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[39]  Michael E. Beverland,et al.  Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.

[40]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[41]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[42]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[43]  D. Leung,et al.  Flag fault-tolerant error correction, measurement, and quantum computation for cyclic Calderbank-Shor-Steane codes , 2018, Physical Review A.

[44]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[45]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[46]  Nicolai Friis,et al.  Fault-tolerant interface between quantum memories and quantum processors , 2016, Nature Communications.

[47]  Jeongwan Haah,et al.  Distillation with Sublogarithmic Overhead. , 2017, Physical review letters.

[48]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[49]  Christopher Chamberland,et al.  FLAG FAULT-TOLERANT ERROR CORRECTION WITH ARBITRARY DISTANCE CODES , 2017, 1708.02246.

[50]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[51]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[52]  Austin G. Fowler,et al.  Topological code Autotune , 2012, 1202.6111.

[53]  Hartmut Neven,et al.  Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization , 2019, Quantum.

[54]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[55]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[56]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[57]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[58]  Nicolas Delfosse,et al.  Hierarchical decoding to reduce hardware requirements for quantum computing , 2020, ArXiv.

[59]  Guanyu Zhu,et al.  Universal logical gates with constant overhead: instantaneous Dehn twists for hyperbolic quantum codes , 2019, Quantum.

[60]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[61]  B. Reichardt Improved magic states distillation for quantum universality , 2004, quant-ph/0411036.

[62]  Benjamin J. Brown,et al.  The boundaries and twist defects of the color code and their applications to topological quantum computation , 2018, Quantum.

[63]  Victor V. Albert,et al.  Performance and structure of single-mode bosonic codes , 2017, 1708.05010.

[64]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[65]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[66]  Tomas Jochym-O'Connor,et al.  Error suppression via complementary gauge choices in Reed-Muller codes , 2017, 1705.00010.

[67]  Rui Chao,et al.  Flag fault-tolerant error correction for any stabilizer code , 2019 .

[68]  Koen Bertels,et al.  Code deformation and lattice surgery are gauge fixing , 2018, New Journal of Physics.

[69]  Andrew W. Cross,et al.  Fault-tolerant magic state preparation with flag qubits , 2018, Quantum.

[70]  Isaac L. Chuang,et al.  Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes , 2016, 1603.03948.

[71]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[72]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[73]  Isaac H. Kim,et al.  The surface code with a twist , 2016, 1612.04795.

[74]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[75]  Andrew J. Landahl,et al.  Quantum computing by color-code lattice surgery , 2014, 1407.5103.

[76]  Daniel Litinski,et al.  Magic State Distillation: Not as Costly as You Think , 2019, Quantum.

[77]  David Poulin,et al.  Magic state distillation at intermediate size , 2017, Quantum Inf. Comput..

[78]  David Poulin,et al.  Fault-Tolerant Quantum Computing in the Pauli or Clifford Frame with Slow Error Diagnostics , 2017, 1704.06662.

[79]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.