On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity

Improving the selectivity of gas sensors is crucial for their further development. One effective route to enhance this key property of sensors is the use of selective nanomembrane materials. This work aims to present how metal-organic frameworks (MOFs) and thin films prepared by atomic layer deposition (ALD) can be applied as nanomembranes to separate different gases, and hence improve the selectivity of gas sensing devices. First, the fundamentals of the mechanisms and configuration of gas sensors will be given. A selected list of studies will then be presented to illustrate how MOFs and ALD materials can be implemented as nanomembranes and how they can be implemented to improve the operational performance of gas sensing devices. This review comprehensively shows the benefits of these novel selective nanomaterials and opens prospects for the sensing community.

[1]  A. Julbe,et al.  Atomic layer deposition (ALD) on inorganic or polymeric membranes , 2019, Journal of Applied Physics.

[2]  I. Iatsunskyi,et al.  Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires , 2019, Journal of Materials Chemistry A.

[3]  M. Bechelany,et al.  Combining nanoparticles grown by ALD and MOFs for gas separation and catalysis applications , 2019, Pure and Applied Chemistry.

[4]  Lina Cao,et al.  Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity , 2019, Science Advances.

[5]  J. Michler,et al.  Fracture Mechanics and Oxygen Gas Barrier Properties of Al2O3/ZnO Nanolaminates on PET Deposited by Atomic Layer Deposition , 2019, Nanomaterials.

[6]  M. Bechelany,et al.  Atomic layer deposition for biosensing applications. , 2018, Biosensors & bioelectronics.

[7]  Bing Zou,et al.  Advances of metal–organic frameworks for gas sensing , 2018, Polyhedron.

[8]  Li Zhang,et al.  Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications—Towards the CMOS-MEMS Monolithic Approach , 2018, Micromachines.

[9]  A. Julbe,et al.  Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities , 2018, Chemistry of Materials.

[10]  I. Iatsunskyi,et al.  High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal-Organic Framework Membranes. , 2018, ACS applied materials & interfaces.

[11]  I. Iatsunskyi,et al.  Novel and Facile Route for the Synthesis of Tunable Boron Nitride Nanotubes Combining Atomic Layer Deposition and Annealing Processes for Water Purification , 2018 .

[12]  S. Kaskel,et al.  Adsorption and Detection of Hazardous Trace Gases by Metal–Organic Frameworks , 2018, Advanced materials.

[13]  C. Detavernier,et al.  The transformation behaviour of "alucones", deposited by molecular layer deposition, in nanoporous Al2O3 layers. , 2018, Dalton transactions.

[14]  Shuo Zhao,et al.  Merger of Energetic Affinity and Optimal Geometry Provides New Class of Boron Nitride Based Sorbents with Unprecedented Hydrogen Storage Capacity. , 2018, Small.

[15]  C. Xie,et al.  Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays , 2018 .

[16]  M. Bechelany,et al.  Enhanced Catalytic Glycerol Oxidation Activity Enabled by Activated‐Carbon‐Supported Palladium Catalysts Prepared through Atomic Layer Deposition , 2018 .

[17]  Ananya Dey,et al.  Semiconductor metal oxide gas sensors: A review , 2018 .

[18]  D. Cao,et al.  Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect. , 2018, Analytical chemistry.

[19]  Ki-Joong Kim,et al.  Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform. , 2018, ACS sensors.

[20]  I. Iatsunskyi,et al.  Mechanical properties of boron nitride thin films prepared by atomic layer deposition , 2017 .

[21]  R. Penner,et al.  Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration. , 2017, ACS nano.

[22]  M. Allendorf,et al.  An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. , 2017, Chemical Society reviews.

[23]  Jing Li,et al.  Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. , 2017, Chemical Society reviews.

[24]  Ghenadii Korotcenkov,et al.  Metal oxide composites in conductometric gas sensors: Achievements and challenges , 2017 .

[25]  Sebastien Balme,et al.  Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition. , 2017, ACS applied materials & interfaces.

[26]  Heberto Gómez-Pozos,et al.  A Study of the CO Sensing Responses of Cu-, Pt- and Pd-Activated SnO2 Sensors: Effect of Precipitation Agents, Dopants and Doping Methods , 2017, Sensors.

[27]  Matteo Falasconi,et al.  Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy) , 2017, Sensors.

[28]  B. Yan,et al.  Eu(III)-functionalized ZnO@MOF heterostructures: integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles , 2017 .

[29]  Wenyan Zhang,et al.  Effect of Coordinated Solvent Molecules on Metal Coordination Sphere and Solvent-Induced Transformations , 2017 .

[30]  Rumen Yordanov,et al.  Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors , 2016 .

[31]  O. Nilsen,et al.  All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition , 2016, Nature Communications.

[32]  I. Iatsunskyi,et al.  Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates , 2016 .

[33]  M. Creatore,et al.  Dynamic Ellipsometric Porosimetry Investigation of Permeation Pathways in Moisture Barrier Layers on Polymers. , 2016, ACS applied materials & interfaces.

[34]  Jong-Ho Lee,et al.  Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate , 2016 .

[35]  Jianping Ma,et al.  An in situ self-assembled Cu4I4-MOF-based mixed matrix membrane: a highly sensitive and selective naked-eye sensor for gaseous HCl. , 2016, Chemical communications.

[36]  Sunghoon Park,et al.  ZnO-capped nanorod gas sensors , 2016 .

[37]  Mengmeng Li,et al.  Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor , 2016 .

[38]  Jae-Hun Kim,et al.  MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. , 2016, ACS applied materials & interfaces.

[39]  Rui‐Biao Lin,et al.  Photoluminescent Metal–Organic Frameworks for Gas Sensing , 2016, Advanced science.

[40]  Aamod V. Desai,et al.  Neutral N-donor ligand based flexible metal-organic frameworks. , 2016, Dalton transactions.

[41]  Xianghong Liu,et al.  Nanostructured Materials for Room‐Temperature Gas Sensors , 2016, Advanced materials.

[42]  B. Yan,et al.  Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF. , 2016, Nanoscale.

[43]  M. Verheijen,et al.  Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation , 2016, Nanotechnology.

[44]  M. Creatore,et al.  Ellipsometric Porosimetry and Electrochemical Impedance Spectroscopy Characterization for Moisture Permeation Barrier Layers , 2015 .

[45]  Hywel Morgan,et al.  Recent developments in 2D layered inorganic nanomaterials for sensing. , 2015, Nanoscale.

[46]  Svetlana Mintova,et al.  Gas sensing using porous materials for automotive applications. , 2015, Chemical Society reviews.

[47]  A. Weimer,et al.  An overview of highly porous oxide films with tunable thickness prepared by molecular layer deposition , 2015 .

[48]  A. Julbe,et al.  Highly crystalline MOF-based materials grown on electrospun nanofibers. , 2015, Nanoscale.

[49]  A. Julbe,et al.  An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers , 2015 .

[50]  N. Biyikli,et al.  Low‐Temperature Deposition of Hexagonal Boron Nitride via Sequential Injection of Triethylboron and N2/H2 Plasma , 2014 .

[51]  Wei Zhou,et al.  Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why? , 2014, The journal of physical chemistry letters.

[52]  R. Maeda,et al.  Detection of Volatile Organic Compounds by Weight-Detectable Sensors coated with Metal-Organic Frameworks , 2014, Scientific Reports.

[53]  H. Tan,et al.  Atomic layer deposition of a MoS₂ film. , 2014, Nanoscale.

[54]  M. Karppinen,et al.  Organic and inorganic–organic thin film structures by molecular layer deposition: A review , 2014, Beilstein journal of nanotechnology.

[55]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[56]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[57]  M. Verheijen,et al.  Atomic layer deposition of high-purity palladium films from Pd(hfac)2 and H2 and O2 plasmas , 2014 .

[58]  M. Sanden,et al.  On the role of nanoporosity in controlling the performance of moisture permeation barrier layers , 2014 .

[59]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[60]  Seda Keskin,et al.  Effects of electrostatic interactions on gas adsorption and permeability of MOF membranes , 2014 .

[61]  M. Ritala,et al.  Atomic Layer Deposition of Noble Metals and Their Oxides , 2014 .

[62]  M. Ritala,et al.  Studies on atomic layer deposition of IRMOF-8 thin films , 2015 .

[63]  Roland Pohle,et al.  Work function based gas sensing with Cu-BTC metal-organic framework for selective aldehyde detection , 2013 .

[64]  J. Jaworski,et al.  Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives. , 2013, Nanoscale.

[65]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[66]  M. Gardon,et al.  A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors , 2013, Journal of Materials Science: Materials in Electronics.

[67]  Zhiyong Tang,et al.  Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. , 2013, Angewandte Chemie.

[68]  Jun-Hao Wang,et al.  A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour , 2013 .

[69]  Daqiang Zhang,et al.  A Survey on Gas Sensing Technology , 2012, Sensors.

[70]  D. Garcia-Alonso,et al.  Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing , 2012 .

[71]  G. Xiao,et al.  Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition , 2012, Science.

[72]  Zhen Jin,et al.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review , 2012, Sensors.

[73]  Nicola Pinna,et al.  Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications , 2012, Advanced materials.

[74]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[75]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[76]  M. Putkonen Precursors for ALD Processes , 2012 .

[77]  G. Eranna,et al.  Metal Oxide Nanostructures as Gas Sensing Devices , 2011 .

[78]  Seong-Hyeon Hong,et al.  A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method , 2011 .

[79]  S. George,et al.  Progress and future directions for atomic layer deposition and ALD-based chemistry , 2011 .

[80]  C. Detavernier,et al.  Tailoring nanoporous materials by atomic layer deposition. , 2011, Chemical Society reviews.

[81]  I. Raaijmakers (Invited) Current and Future Applications of ALD in Micro-Electronics , 2011, ECS Transactions.

[82]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[83]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[84]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[85]  J. Falconer,et al.  H2 separation using defect-free, inorganic composite membranes. , 2011, Journal of the American Chemical Society.

[86]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[87]  J. Caro,et al.  Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes , 2010, Advanced materials.

[88]  Soonhyun Kim,et al.  Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor , 2010 .

[89]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[90]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[91]  Omar K Farha,et al.  Control over catenation in metal-organic frameworks via rational design of the organic building block. , 2010, Journal of the American Chemical Society.

[92]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[93]  A. Weimer,et al.  Ultra-thin microporous-mesoporous metal oxide films prepared by molecular layer deposition (MLD). , 2009, Chemical communications.

[94]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[95]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[96]  S. George,et al.  Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers. , 2009, Accounts of chemical research.

[97]  Steven M. George,et al.  Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition , 2008 .

[98]  M. Aronniemi,et al.  Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition , 2008 .

[99]  S. George,et al.  Molecular Layer Deposition of Alucone Polymer Films Using Trimethylaluminum and Ethylene Glycol , 2008 .

[100]  Bing-Lin Gu,et al.  Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor , 2008, 0803.1516.

[101]  C. Brinker,et al.  Sub-10 nm thick microporous membranes made by plasma-defined atomic layer deposition of a bridged silsesquioxane precursor. , 2007, Journal of the American Chemical Society.

[102]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[103]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[104]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[105]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[106]  Yun Chi,et al.  Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature , 2004 .

[107]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[108]  Hyungjun Kim,et al.  Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing , 2003 .

[109]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[110]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[111]  K. Kukli,et al.  Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources , 2000, Science.

[112]  J. H. Lee,et al.  Technological realization of semiconducting metal oxide–based gas sensors , 2019, Gas Sensors Based on Conducting Metal Oxides.

[113]  Gregory S. Day,et al.  Luminescent sensors based on metal-organic frameworks , 2018 .

[114]  J. V. Ommen,et al.  Atomic and molecular layer deposition: off the beaten track. , 2016, Chemical communications.

[115]  Loïc Assaud,et al.  Highly-Conformal TiN Thin Films Grown by Thermal and Plasma-Enhanced Atomic Layer Deposition , 2014 .

[116]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[117]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[118]  I. Manners,et al.  B-N compounds for chemical hydrogen storage. , 2009, Chemical Society reviews.

[119]  C. Perez,et al.  Nanostructured Tin Dioxide Materials for Gas Sensor Applications , 2006 .

[120]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[121]  J. Carlsson,et al.  Atomic layer deposition of BN thin films , 2002 .

[122]  M. Allendorf,et al.  Reports of Meetings , 1970 .