Algorithms for Propositional Model Counting

We present algorithms for the propositional model counting problem #SAT. The algorithms are based on tree-decompositions of graphs associated with the given CNF formula, in particular primal, dual, and incidence graphs. We describe the algorithms in a coherent fashion that admits a direct comparison of their algorithmic advantages. We analyze and discuss several aspects of the algorithms including worst-case time and space requirements and simplicity of implementation. The algorithms are described in sufficient detail for making an implementation reasonably easy.

[1]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[2]  Georg Gottlob,et al.  Fixed-parameter complexity in AI and nonmonotonic reasoning , 1999, Artif. Intell..

[3]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[4]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[5]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..

[6]  Toniann Pitassi,et al.  Algorithms and complexity results for #SAT and Bayesian inference , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[7]  Marcel P Schützenberger,et al.  Mots : Mélanges offerts à M.-P. Schützenberger , 1990 .

[8]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[9]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[10]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[11]  Martin Fürer Faster integer multiplication , 2007, STOC '07.

[12]  Petr Hlinený,et al.  Finding Branch-Decompositions and Rank-Decompositions , 2007, SIAM J. Comput..

[13]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[14]  Naomi Nishimura,et al.  Solving #SAT using vertex covers , 2006, Acta Informatica.

[15]  Martin Grohe,et al.  Constraint solving via fractional edge covers , 2006, SODA 2006.

[16]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[17]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[18]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[19]  Marc Gyssens,et al.  A unified theory of structural tractability for constraint satisfaction problems , 2008, J. Comput. Syst. Sci..

[20]  Bengt Aspvall,et al.  Memory Requirements for Table Computations in Partial \sl k -Tree Algorithms , 2000, Algorithmica.

[21]  Mihalis Yannakakis,et al.  Algorithms for Acyclic Database Schemes , 1981, VLDB.

[22]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[23]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[24]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[25]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[26]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[27]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[28]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[29]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[30]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[31]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[32]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[33]  Marc Gyssens,et al.  A Unified Theory of Structural Tractability for Constraint Satisfaction and Spread Cut Decomposition , 2005, IJCAI.

[34]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.