The quadrature discretization method in the solution of the Fokker-Planck equation with nonclassical basis functions

Fokker–Planck equations are used extensively to study a variety of problems in nonequilibrium statistical mechanics. A discretization method referred to as the quadrature discretization method (QDM) is introduced for the time-dependent solution of Fokker–Planck equations. The QDM is based on the discretization of the probability density function on a grid of points that coincide with the points of a quadrature. The quadrature is based on a set of nonclassical polynomials orthogonal with respect to some weight function. For the Fokker–Planck equation, the weight functions that have often provided rapid convergence of the eigenvalues of the Fokker–Planck operator are the steady distributions at infinite time. Calculations are carried out for several systems with bistable potentials that arise in the study of optical bistability, reactive systems and climate models. The rate of convergence of the eigenvalues and the eigenfunctions of the Fokker–Planck equation is very rapid with this approach. The time evolu...

[1]  G. Parisi,et al.  Stochastic resonance in climatic change , 1982 .

[2]  B. Shizgal Eigenvalues of the Lorentz Fokker–Planck equation , 1979 .

[3]  E. M. Epperlein Fokker–Planck modeling of electron transport in laser-produced plasmas , 1994 .

[4]  H. Risken,et al.  Solutions of the Fokker-Planck equation describing the thermalization of neutrons in a heavy gas moderator , 1984 .

[5]  Pagonabarraga,et al.  Phenomenological approach to nonlinear Langevin equations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Vogel,et al.  Quantum tunneling rates in dispersive optical bistability for low cavity damping. , 1988, Physical review. A, General physics.

[7]  C. Nicolis,et al.  Long-term climatic transitions and stochastic resonance , 1993 .

[8]  A. Khare,et al.  Supersymmetry, Shape Invariance and Exactly Solvable Potentials , 1988 .

[9]  A. P. Blokhin,et al.  Effect of the intensity of collisions on the orientational relaxation of spherical top molecules , 1996 .

[10]  M. Schulz,et al.  Eigenfunctions of the magnetospheric radial-diffusion operator , 1988 .

[11]  Effect of Periodic Driving on the Escape in Periodic Potentials , 1991 .

[12]  G. Ananthakrishna,et al.  Diffusion in a bistable potential: A comparative study of different methods of solution , 1983 .

[13]  Bernie D. Shizgal,et al.  A Chebyshev pseudospectral multi-domain method for steady flow past a cylinder up to Re = 150 , 1994 .

[14]  A. Magnus On Freud's equations for exponential weights , 1986 .

[15]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[16]  Eigenvalues of the Fokker—Planck and BGK operators for a double-well potential , 1984 .

[17]  Mourad E. H. Ismail,et al.  Orthogonal polynomials : theory and practice , 1990 .

[18]  Fox,et al.  Stochastic resonance in a double well. , 1989, Physical review. A, General physics.

[19]  Bernie D. Shizgal,et al.  Chebyshev pseudospectral multi-domain technique for viscous flow calculation , 1994 .

[20]  M. J. Englefield Exact solutions of a Fokker-Planck equation , 1988 .

[21]  H. Brand,et al.  Multiplicative stochastic processes in statistical physics , 1979 .

[22]  G. Hu,et al.  The initial value problem of a Fokker-Planck equation with a bistable potential , 1985 .

[23]  Jia,et al.  Transient properties of a bistable kinetic model with correlations between additive and multiplicative noises: Mean first-passage time. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  M. Rees,et al.  An improved kinetic model for the polar outflow of a minor ion , 1996 .

[25]  G. Moro Kinetic equations for site populations from the Fokker–Planck equation , 1995 .

[26]  Michael Danos,et al.  Mathematics For Quantum Mechanics , 1962 .

[27]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[28]  A self‐adjoint form of linearized Coulomb collision operator for energetic ions , 1995 .

[29]  C. Nicolis Self-oscillations and predictability in climate dynamics - periodic forcing and phase locking , 1984 .

[30]  Bernie D. Shizgal,et al.  A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems , 1981 .

[31]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[32]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[33]  Blackmore,et al.  Discrete-ordinate method of solution of Fokker-Planck equations with nonlinear coefficients. , 1985, Physical review. A, General physics.

[34]  West,et al.  Bistability driven by Gaussian colored noise: First-passage times. , 1987, Physical review. A, General physics.

[35]  L. Demeio,et al.  Time dependent nucleation. II. A semiclassical approach , 1993 .

[36]  A. Comtet,et al.  EXACTNESS OF SEMICLASSICAL BOUND STATE ENERGIES FOR SUPERSYMMETRIC QUANTUM MECHANICS , 1985 .

[37]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[38]  Mean first-passage times and colored noise. , 1988, Physical review. A, General physics.

[39]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[40]  Steven A. Adelman,et al.  Fokker-Planck equations for simple non-Markovian systems , 1976 .

[41]  Multiexponential approximations to the torsional time correlation function for one‐dimensional systems with many barriers , 1995 .

[42]  Bernie D. Shizgal,et al.  A discrete ordinate method of solution of linear boundary value and eigenvalue problems , 1984 .

[43]  J. S. Dehesa,et al.  On orthogonal polynomials with perturbed recurrence relations , 1990 .

[44]  Bernie D. Shizgal,et al.  Time dependent nucleation , 1989 .

[45]  Wiesenfeld,et al.  Theory of stochastic resonance. , 1989, Physical review. A, General physics.

[46]  H. Risken Fokker-Planck Equation , 1984 .

[47]  W. Schieve,et al.  Phase transitions induced by white noise in bistable optical systems , 1978 .

[48]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[49]  Bernie D. Shizgal,et al.  A comparison of differential quadrature methods for the solution of partial differential equations , 1993 .

[50]  Edward W. Larsen,et al.  Discretization methods for one-dimensional Fokker-Planck operators , 1985 .

[51]  Kovács,et al.  Supersymmetry and double-well potentials. , 1988, Physical review letters.

[52]  Heli Chen,et al.  The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions , 1996 .

[53]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[54]  H. Dekker,et al.  Eigenvalues of a diffusion process with a critical point , 1979 .

[55]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[56]  T. Heskes On Fokker-Planck approximations of on-line learning processes , 1994 .

[57]  J. S. Lew,et al.  Nonnegative solutions of a nonlinear recurrence , 1983 .

[58]  B. Shizgal,et al.  Eigenvalues of the Boltzmann collision operator for binary gases: Mass dependence , 1981 .

[59]  K. Freed,et al.  Torsional time correlation function for one‐dimensional systems with barrier crossing: Periodic potential , 1994 .

[60]  M. Gitterman,et al.  Transient effects in nucleation for two‐dimensional systems , 1986 .

[61]  Projected dynamics: Analysis of a chemical reaction model , 1989 .

[62]  T. Erneux,et al.  Temporal aspects of absorptive optical bistability , 1983 .

[63]  Variational schemes in the Fokker - Planck equation , 1995, cond-mat/9505037.

[64]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[65]  V. Petrosian,et al.  Fokker-Planck Equations of Stochastic Acceleration: Green's Functions and Boundary Conditions , 1995 .

[66]  Waldron,et al.  Exact analytic formula for the correlation time of a single-domain ferromagnetic particle. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  V. Petrosian,et al.  Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods , 1996 .

[68]  G. Nicolis,et al.  Stochastic aspects of climatic transitions–Additive fluctuations , 1981 .

[69]  Newman,et al.  Path integrals and non-Markov processes. II. Escape rates and stationary distributions in the weak-noise limit. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[70]  B. Matkowsky,et al.  On the non-Markovian theory of activated rate processes in the small friction limit , 1985 .

[71]  Tipping,et al.  Eigenvalues of the Schrödinger equation via the Riccati-Padé method. , 1989, Physical review. A, General physics.

[72]  Zhou,et al.  Remarks on stochastic resonance. , 1989, Physical review. A, General physics.

[73]  B. Shizgal,et al.  Discrete ordinate method of solution of a Fokker—Planck equation with a bistable potential , 1984 .

[74]  “Escape” of a periodically driven particle from a metastable state in a noisy system , 1993 .

[75]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[76]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[77]  Shi,et al.  Transient kinetics of nucleation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[78]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[79]  Bernie D. Shizgal,et al.  On the generation of orthogonal polynomials using asymptotic methods for recurrence coefficients , 1993 .

[80]  A. P. Blokhin,et al.  Rotational Brownian motion of spherical molecules the Fokker-Planck equation with memory , 1996 .

[81]  M. J. Englefield A solution of a Fokker-Planck equation , 1990 .

[82]  G. Hu The initial value problem of birth-death master equations , 1985 .

[83]  Géza Freud,et al.  A class of orthogonal polynomials , 1971 .

[84]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[85]  Miyazawa Theory of the one-variable Fokker-Planck equation. , 1989, Physical review. A, General physics.

[86]  Dante R. Chialvo,et al.  Modulated noisy biological dynamics: Three examples , 1993 .

[87]  A. Malakhov,et al.  EXACT SOLUTION OF KRAMERS' PROBLEM FOR PIECEWISE PARABOLIC POTENTIAL PROFILES , 1996 .

[88]  Morillo,et al.  Validity of basic concepts in nonlinear cooperative Fokker-Planck models. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[89]  McMahon,et al.  Electric field dependence of transient electron transport properties in rare-gas moderators. , 1985, Physical review. A, General physics.

[90]  P. Talkner Finite barrier corrections for the Kramers rate problem in the spatial diffusion regime , 1994 .

[91]  Adi R. Bulsara,et al.  Spectrum and dynamic-response function of transmitted light in the absorptive optical bistability , 1980 .

[92]  H. Okamoto Stochastic formulation of quantum mechanics based on a complex Langevin equation , 1990 .