Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans.

[1]  A. Hubbard,et al.  Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. , 2010, Cell metabolism.

[2]  Di Chen,et al.  With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. , 2010, Cell metabolism.

[3]  Subhash D. Katewa,et al.  4E-BP Extends Lifespan upon Dietary Restriction by Enhancing Mitochondrial Activity in Drosophila , 2009, Cell.

[4]  P. Kapahi,et al.  HIF-1 Modulates Dietary Restriction-Mediated Lifespan Extension via IRE-1 in Caenorhabditis elegans , 2009, PLoS genetics.

[5]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[6]  B. Keiper,et al.  Depletion of the cap-associated isoform of translation factor eIF4G induces germline apoptosis in C. elegans , 2008, Cell Death and Differentiation.

[7]  Matt Kaeberlein,et al.  Yeast Life Span Extension by Depletion of 60S Ribosomal Subunits Is Mediated by Gcn4 , 2008, Cell.

[8]  Jennifer M. A. Tullet,et al.  Direct Inhibition of the Longevity-Promoting Factor SKN-1 by Insulin-like Signaling in C. elegans , 2008, Cell.

[9]  S. B. Cooper,et al.  The Mediator Subunit MDT-15 Confers Metabolic Adaptation to Ingested Material , 2008, PLoS genetics.

[10]  A. Hinnebusch,et al.  New modes of translational control in development, behavior, and disease. , 2007, Molecular cell.

[11]  P. Kapahi,et al.  Longevity determined by developmental arrest genes in Caenorhabditis elegans , 2007, Aging cell.

[12]  Nicholas D Bonawitz,et al.  Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. , 2007, Cell metabolism.

[13]  G. Ruvkun,et al.  Lifespan Regulation by Evolutionarily Conserved Genes Essential for Viability , 2007, PLoS genetics.

[14]  Nektarios Tavernarakis,et al.  eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans , 2007, Nature.

[15]  Seung-Jae V. Lee,et al.  Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans , 2007, Aging cell.

[16]  P. Kapahi,et al.  Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans , 2007, Aging cell.

[17]  Lesilee S. Rose,et al.  LET-711, the Caenorhabditis elegans NOT1 ortholog, is required for spindle positioning and regulation of microtubule length in embryos. , 2006, Molecular biology of the cell.

[18]  T. Johnson,et al.  daf-16 protects the nematode Caenorhabditis elegans during food deprivation. , 2006, The journals of gerontology. Series A, Biological sciences and medical sciences.

[19]  K. Yamamoto,et al.  A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. , 2006, Genes & development.

[20]  C. Nicchitta,et al.  mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of cap-dependent translation. , 2006, RNA.

[21]  C. Saccone,et al.  The Fatty Acid Synthase Gene is a Conserved p53 Family Target Gene from Worm to Human , 2006, Cell cycle.

[22]  A. Hinnebusch Translational regulation of GCN4 and the general amino acid control of yeast. , 2005, Annual review of microbiology.

[23]  John N. Weinstein,et al.  High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID) , 2005, BMC Bioinformatics.

[24]  Michael Zuker,et al.  DINAMelt web server for nucleic acid melting prediction , 2005, Nucleic Acids Res..

[25]  Marjan Trutschl,et al.  Application of machine learning and visualization of heterogeneous datasets to uncover relationships between translation and developmental stage expression of C. elegans mRNAs. , 2005, Physiological genomics.

[26]  M. Smith-Wheelock,et al.  Methionine‐deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF‐I and insulin levels, and increases hepatocyte MIF levels and stress resistance , 2005, Aging cell.

[27]  R. Rhoads,et al.  Translation of a Small Subset of Caenorhabditis elegans mRNAs Is Dependent on a Specific Eukaryotic Translation Initiation Factor 4E Isoform , 2005, Molecular and Cellular Biology.

[28]  J. Apfeld,et al.  The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. , 2004, Genes & development.

[29]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[30]  R. Aebersold,et al.  Gene Expression Analyzed by High-resolution State Array Analysis and Quantitative Proteomics , 2004, Molecular & Cellular Proteomics.

[31]  R. Morimoto,et al.  Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. , 2003, Molecular biology of the cell.

[32]  Mark J. van der Laan,et al.  A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap , 2003 .

[33]  Kevin R. Thornton,et al.  The origin of new genes: glimpses from the young and old , 2003, Nature Reviews Genetics.

[34]  N. Socci,et al.  Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. , 2003, Molecular cell.

[35]  Hiroshi Akashi,et al.  Translational selection and yeast proteome evolution. , 2003, Genetics.

[36]  Cori Bargmann,et al.  Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans , 2003, Nature.

[37]  Thomas Dandekar,et al.  A software tool-box for analysis of regulatory RNA elements , 2003, Nucleic Acids Res..

[38]  J. Claverie,et al.  The insertion of palindromic repeats in the evolution of proteins. , 2003, Trends in biochemical sciences.

[39]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[40]  Y. Arava Isolation of polysomal RNA for microarray analysis. , 2003, Methods in molecular biology.

[41]  J. Avruch,et al.  TOR Deficiency in C. elegans Causes Developmental Arrest and Intestinal Atrophy by Inhibition of mRNA Translation , 2002, Current Biology.

[42]  P. L. Larsen,et al.  DAF-16-dependent and independent expression targets of DAF-2 insulin receptor-like pathway in Caenorhabditis elegans include FKBPs. , 2001, Journal of molecular biology.

[43]  S. Hekimi,et al.  Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. , 2001, Developmental cell.

[44]  L. Guarente,et al.  Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans , 2001, Nature.

[45]  P. Zipperlen,et al.  Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans , 2000, Genome Biology.

[46]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[47]  E. Jorgensen,et al.  Mutations in β-Spectrin Disrupt Axon Outgrowth and Sarcomere Structure , 2000, The Journal of cell biology.

[48]  J. Zhang,et al.  Protein-length distributions for the three domains of life. , 2000, Trends in genetics : TIG.

[49]  J. Hershey,et al.  2 The Pathway and Mechanism of Initiation of Protein Synthesis , 2000 .

[50]  N. Sonenberg,et al.  Translational control of gene expression , 2000 .

[51]  D. Hirsh,et al.  Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. , 1999, Molecular biology of the cell.

[52]  M. Schummer,et al.  Messenger RNA translation state: the second dimension of high-throughput expression screening. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Y Honda,et al.  The daf‐2 gene network for longevity regulates oxidative stress resistance and Mn‐superoxide dismutase gene expression in Caenorhabditis elegans , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[54]  C. Berset,et al.  The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Riddle C. Elegans II , 1998 .

[56]  C. Kenyon,et al.  daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. , 1997, Science.

[57]  Koutarou D. Kimura,et al.  daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. , 1997, Science.

[58]  G. S. Johnson,et al.  An Information-Intensive Approach to the Molecular Pharmacology of Cancer , 1997, Science.

[59]  Thomas Blumenthal,et al.  RNA Processing and Gene Structure , 1997 .

[60]  T. Johnson,et al.  A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. , 1996, Genetics.

[61]  J. A. Zimmerman,et al.  Methionine restriction increases blood glutathione and longevity in F344 rats , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[62]  T. Johnson,et al.  Thermotolerance of a long-lived mutant of Caenorhabditis elegans. , 1994, Journal of gerontology.

[63]  P. Jongen,et al.  Ca2+ homeostasis in Brody's disease. A study in skeletal muscle and cultured muscle cells and the effects of dantrolene an verapamil. , 1994, The Journal of clinical investigation.

[64]  C. Kenyon,et al.  A C. elegans mutant that lives twice as long as wild type , 1993, Nature.

[65]  N. Sonenberg Translation factors as effectors of cell growth and tumorigenesis. , 1993, Current opinion in cell biology.

[66]  J. A. Zimmerman,et al.  Low methionine ingestion by rats extends life span. , 1993, The Journal of nutrition.

[67]  A. De Benedetti,et al.  Preferential translation of heat shock mRNAs in HeLa cells deficient in protein synthesis initiation factors eIF-4E and eIF-4 gamma. , 1992, Journal of Biological Chemistry.

[68]  G. Thireos,et al.  Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation , 1989, Cell.

[69]  D. Hirsh,et al.  C. elegans mRNAs acquire a spliced leader through a trans-splicing mechanism. , 1988, Nucleic acids research.

[70]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[71]  George C. Williams,et al.  PLEIOTROPY, NATURAL SELECTION, AND THE EVOLUTION OF SENESCENCE , 1957, Science of Aging Knowledge Environment.