Effects of moderate hypobaric hypoxia on evoked categorical visuocognitive responses

[1]  Marzia Del Zotto,et al.  The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition , 2007, BMC Neuroscience.

[2]  P. Bamidis,et al.  The effect of hypobaric hypoxia on multichannel EEG signal complexity , 2007, Clinical Neurophysiology.

[3]  J. Virués-Ortega,et al.  Human behaviour and development under high-altitude conditions. , 2006, Developmental science.

[4]  N. Fayed,et al.  Evidence of brain damage after high-altitude climbing by means of magnetic resonance imaging. , 2006, The American journal of medicine.

[5]  S. Luck An Introduction to the Event-Related Potential Technique , 2005 .

[6]  P. K. Banerjee,et al.  Effect of hypobaric hypoxia on visual evoked potential at high altitude. , 2005, Journal of environmental biology.

[7]  G. Buela-Casal,et al.  Neuropsychological Functioning Associated with High-Altitude Exposure , 2004, Neuropsychology Review.

[8]  Amitabh,et al.  Changes in visual evoked potentials on acute induction to high altitude. , 2004, The Indian journal of medical research.

[9]  P. K. Banerjee,et al.  Effect of chronic hypobaric hypoxia on components of the human event related potential. , 2004, The Indian journal of medical research.

[10]  S. Karakucuk,et al.  Color vision changes in young subjects acutely exposed to 3,000 m altitude. , 2004, Aviation, space, and environmental medicine.

[11]  Margot J. Taylor,et al.  N170 or N1? Spatiotemporal differences between object and face processing using ERPs. , 2004, Cerebral cortex.

[12]  Hans-Jochen Heinze,et al.  Localizing visual discrimination processes in time and space. , 2002, Journal of neurophysiology.

[13]  J. Tanaka,et al.  An electrophysiological comparison of visual categorization and recognition memory , 2002, Cognitive, affective & behavioral neuroscience.

[14]  A. Antal,et al.  Corticostriatal circuitry mediates fast-track visual categorization. , 2002, Brain research. Cognitive brain research.

[15]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[16]  T. Hornbein The high-altitude brain. , 2001, The Journal of experimental biology.

[17]  T. Hornbein,et al.  High Altitude : An Exploration of Human Adaptation , 2001 .

[18]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[19]  N. Schellart,et al.  Transient and maintained changes of the spontaneous occipital EEG during acute systemic hypoxia. , 2001, Aviation, space, and environmental medicine.

[20]  S. Thorpe,et al.  The Time Course of Visual Processing: From Early Perception to Decision-Making , 2001, Journal of Cognitive Neuroscience.

[21]  J. Tanaka,et al.  A Neural Basis for Expert Object Recognition , 2001, Psychological science.

[22]  T. Curran Brain potentials of recollection and familiarity , 2000, Memory & cognition.

[23]  X Y Li,et al.  Effects of acute exposure to mild or moderate hypoxia on human psychomotor performance and visual-reaction time. , 2000, Hang tian yi xue yu yi xue gong cheng = Space medicine & medical engineering.

[24]  Michèle Fabre-Thorpe,et al.  Brain Areas Involved in Rapid Categorization of Natural Images: An Event-Related fMRI Study , 2000, NeuroImage.

[25]  J. Watson,et al.  Neuropsychological and neuropathological sequelae of cerebral anoxia: A critical review , 2000, Journal of the International Neuropsychological Society.

[26]  G. Matheson,et al.  Effects on regional brain metabolism of high-altitude hypoxia: a study of six US marines. , 1999, American journal of physiology. Regulatory, integrative and comparative physiology.

[27]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[28]  A. Peacock ABC of oxygen: oxygen at high altitude. , 1998, BMJ.

[29]  S. Hillyard,et al.  Event-related brain potentials in the study of visual selective attention. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B Fowler,et al.  Slowing due to acute hypoxia originates early in the visual system. , 1997, Aviation, space, and environmental medicine.

[31]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[32]  R. Adams,et al.  Principles of Neurology , 1996 .

[33]  B Fowler,et al.  An AFM investigation of the effects of acute hypoxia on mental rotation. , 1996, Ergonomics.

[34]  James F. Allen,et al.  The Brain at High Altitude: Hypometabolism as a Defense against Chronic Hypoxia? , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[35]  P. Lutz,et al.  The Brain Without Oxygen: Causes of Failure-Physiological and Molecular Mechanisms for Survival , 1994 .

[36]  B Fowler,et al.  The slowing of visual processing by hypoxia. , 1993, Ergonomics.

[37]  P Ullsperger,et al.  P3 varies with stimulus categorization rather than probability. , 1993, Electroencephalography and clinical neurophysiology.

[38]  A. Imai,et al.  Cognitive performance and event-related brain potentials under simulated high altitudes. , 1993, Journal of applied physiology.

[39]  T. Schlaepfer,et al.  Paradoxical effects of mild hypoxia and moderate altitude on human visual perception. , 1992, Clinical science.

[40]  P. W. Mccormick,et al.  Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans. , 1991, Stroke.

[41]  T. Landis,et al.  Cognitive changes at high altitude in healthy climbers and in climbers developing acute mountain sickness. , 1991, Aviation, space, and environmental medicine.

[42]  J P Rosenfeld,et al.  Parietal P3 response as an indicator of stimulus categorization: increased P3 amplitude to categorically deviant target and nontarget stimuli. , 1990, Psychophysiology.

[43]  P. Brugger,et al.  Persistent cognitive impairment in climbers after repeated exposure to extreme altitude , 1989, Neurology.

[44]  E. Donchin,et al.  Is the P300 component a manifestation of context updating? , 1988, Behavioral and Brain Sciences.

[45]  G. Wieneke,et al.  Quantitative EEG changes due to hypobaric hypoxia in normal subjects. , 1988, Electroencephalography and clinical neurophysiology.

[46]  A. Vingrys,et al.  The effect of a moderate level of hypoxia on human color vision , 1987, Documenta Ophthalmologica.

[47]  Greene Rg,et al.  The effects of mild hypoxia on a logical reasoning task , 1985 .

[48]  J. Ford,et al.  ERPs to response production and inhibition. , 1985, Electroencephalography and clinical neurophysiology.

[49]  E. Donchin,et al.  Performance of concurrent tasks: a psychophysiological analysis of the reciprocity of information-processing resources. , 1983, Science.

[50]  J. Kobrick Effects of hypoxia on the luminance threshold for target detection. , 1983, Aviation, space, and environmental medicine.

[51]  M. Raichle The pathophysiology of brain ischemia , 1983, Annals of neurology.

[52]  G. McCarthy,et al.  Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. , 1977, Science.

[53]  J. Dempsey,et al.  Effect of sojourn at 4,300 m altitude on electroencephalogram and visual evoked response. , 1975, Journal of applied physiology.

[54]  E C Poulton,et al.  Complex reaction times at simulated cabin altitudes of 5,000 feet and 8,000 feet. , 1966, Aerospace medicine.

[55]  A. Guyton,et al.  Textbook of Medical Physiology , 1961 .

[56]  R. Mcfarland,et al.  THE RELATION BETWEEN FOVEAL VISUAL ACUITY AND ILLUMINATION UNDER REDUCED OXYGEN TENSION , 1940, The Journal of general physiology.

[57]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[58]  M. Kiefer,et al.  Cognitive Neuroscience: Tracking the time course of object categorization using event-related potentials , 1999 .

[59]  M. Takagi,et al.  Two different components of contingent negative variation (CNV) and their relation to changes in reaction time under hypobaric hypoxic conditions. , 1999, Aviation, space, and environmental medicine.

[60]  C J Bartholomew,et al.  The effect of moderate levels of simulated altitude on sustained cognitive performance. , 1999, The International journal of aviation psychology.

[61]  J. D. Weerd,et al.  Evoked Potential Manual , 1990, Springer Netherlands.

[62]  William Francis Ganong,et al.  Review of Medical Physiology , 1969 .

[63]  N. Kanwisher,et al.  PSYCHOLOGICAL SCIENCE Research Article Visual Recognition As Soon as You Know It Is There, You Know What It Is , 2022 .