Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells

Broadband light trapping is numerically demonstrated in ultra-thin solar cells composed of a flat amorphous silicon absorber layer deposited on a silver mirror. A one-dimensional silver array is used to enhance light absorption in the visible spectral range with low polarization and angle dependencies. In addition, the metallic nanowires play the role of transparent electrodes. We predict a short-circuit current density of 14.6 mA/cm2 for a solar cell with a 90 nm-thick amorphous silicon absorber layer.

[1]  W. Leung,et al.  A New Architecture for Transparent Electrodes: Relieving the Trade‐Off Between Electrical Conductivity and Optical Transmittance , 2011, Advanced materials.

[2]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[3]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[4]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[5]  Philippe Lalanne,et al.  Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization , 1998 .

[6]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.

[7]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[8]  Shanhui Fan,et al.  Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. , 2010, Nano letters.

[9]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[10]  Albert Polman,et al.  Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells , 2022 .

[11]  C. Ballif,et al.  Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers , 2009 .

[12]  Christophe Ballif,et al.  Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler , 2010 .

[13]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[14]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[15]  D. L. Staebler,et al.  Optically induced conductivity changes in discharge‐produced hydrogenated amorphous silicon , 1980 .

[16]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[17]  V. Terrazzoni-Daudrix,et al.  Optimization of amorphous silicon thin film solar cells for flexible photovoltaics , 2008 .

[18]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[19]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[20]  I. Crupi,et al.  Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes , 2012 .

[21]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[22]  Jean-Luc Pelouard,et al.  λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. , 2011, Nano letters.

[23]  B. Rech,et al.  Potential of amorphous silicon for solar cells , 1999 .

[24]  P. Lalanne,et al.  Highly improved convergence of the coupled-wave method for TM polarization and conical mountings , 1996, Diffractive Optics and Micro-Optics.

[25]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.