Thermal properties, oxidation corrosion behavior, and the in situ ceramization mechanism of SiB6@BPR/HF composites under high-temperature corrosion

[1]  Huadong Fu,et al.  ZrO2f-coated Cf hybrid fibrous reinforcements and properties of their reinforced ceramicizable phenolic resin matrix composites , 2021 .

[2]  Dandan Xie,et al.  Study on improving the high-temperature oxidation resistance of pyrolytic carbons of phenolic resin binder by in-situ formation of carbon nanotubes , 2020 .

[3]  Obinna Uyanna,et al.  Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects , 2020 .

[4]  Shuang Wang,et al.  Effects of SiC content on mechanical, thermal and ablative properties of carbon/phenolic composites , 2020 .

[5]  Yiguang Wang,et al.  Oxidation and ablation behaviors of carbon fiber/phenolic resin composites modified with borosilicate glass and polycarbosilane interface , 2020, Journal of Alloys and Compounds.

[6]  Yanbo Liu,et al.  Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite , 2020, Journal of Materials Science.

[7]  Shuang Wang,et al.  Effects of zirconium carbide content on thermal stability and ablation properties of carbon/phenolic composites , 2020 .

[8]  Y. Qin,et al.  The effect of fibre content on properties of ceramifiable composites , 2020 .

[9]  R. Reddy,et al.  Effect of Oxygen Partial Pressure and Temperature on the Oxidation Behavior of SiB6 , 2019, Metallurgical and Materials Transactions B.

[10]  Taotao Wu,et al.  Zirconium carbide-modified polymer-matrix composites with improved reflectivity under high-energy laser ablation , 2019, Ceramics International.

[11]  D. Sciti,et al.  Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites , 2019, Corrosion Science.

[12]  S. Jabarov,et al.  X-ray diffraction and thermodynamics kinetics of SiB6 under gamma irradiation dose , 2018, Silicon.

[13]  Yiguang Wang,et al.  Effects of polycarbosilane interface on oxidation, mechanical, and ablation properties of carbon fiber-reinforced composites , 2018, Ceramics International.

[14]  G. Wen,et al.  Enhanced mechanical properties of carbon fibre/lithium aluminosilicate composites modified by SiB6 addition , 2018, Advances in Applied Ceramics.

[15]  Raziyeh Ghelich,et al.  Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers , 2018 .

[16]  P. Withers,et al.  Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C , 2017, Nature Communications.

[17]  D. Liang,et al.  Effect of glass frit with low softening temperature on the properties, microstructure and formation mechanism of polysiloxane elastomer-based ceramizable composites , 2017 .

[18]  Y. Qin,et al.  Thermal behavior of phenolic-based ceramizable composites modified by nano-aluminum oxide , 2016 .

[19]  H. You,et al.  Morphology Measurement on Phenolic-Resin/Vitreous-Silica-Fabric Ablation Composites Modified with Tetraethoxysilicate and Silsesquioxanes , 2013 .

[20]  S. Horner,et al.  Reaction Bonded Si/SiB6: Effect of Carbon Additions on Composition and Properties , 2012 .

[21]  G. Fang,et al.  Evaluation of the Effective Properties of High Silica/Phenolic Composite under Volumetric Ablation Condition , 2011 .

[22]  R. Bertoncello,et al.  X‐ray photoelectron spectroscopy investigation of pumice‐supported nickel catalysts , 1995 .

[23]  M. Belyansky,et al.  Influence of the boundary on the interdiffusion in heterostructures , 1994 .

[24]  P. D. Fleischauer,et al.  CHEMICAL AND TRIBOLOGICAL STUDIES OF MoS2 FILMS ON SiC SUBSTRATES , 1990 .

[25]  C. Hogarth,et al.  An XPS study of amorphous MoO3/SiO films deposited by co-evaporation , 1990 .

[26]  W. E. Moddeman,et al.  Ignition mechanism of the titanium–boron pyrotechnic mixture , 1988 .

[27]  J. Castle,et al.  Biased referencing experiments for the XPS analysis of non-conducting materials , 1986 .

[28]  W. L. Jolly,et al.  Core-electron binding energies for compounds of boron, carbon, and chromium , 1970 .