Probing the mechanism of O2 activation by a copper(I) biomimetic complex of a C-H hydroxylating copper monooxygenase.

In this paper, we report, for the first time, a plausible full reaction pathway for the activation of O(2) by a tetraazamacrocyclic monocopper(I) complex and for the subsequent intramolecular alkylic hydroxylation to yield the alkoxide product. This theoretical insight offers remarkable support to the fundamental hypothesis in the field that a hydroperoxo complex of the type Cu(II)OOH intermediate is the key intermediate in this class of reactions. Overall, we give insight into an intramolecular alkylic C-H bond activation due to the O(2) binding to copper(I) with an end-on eta(1)-O(2) ligation. The loss of a water molecule involves the final substrate oxygenation. The complex we consider is a biomimetic of several systems of biological relevance, such as amine oxidases, peptidylglycine-alpha-hydroxylating monooxygenase, and dopamine-beta monooxygenases.