A New Construction of Algebraic Geometry Codes
暂无分享,去创建一个
[1] T. R. N. Rao,et al. Improved geometric Goppa codes. I. Basic theory , 1995, IEEE Trans. Inf. Theory.
[2] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .
[3] V. D. Goppa. Codes on Algebraic Curves , 1981 .
[4] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[5] T. R. N. Rao,et al. A simple approach for construction of algebraic-geometric codes from affine plane curves , 1993, IEEE Trans. Inf. Theory.
[6] W. Waterhouse,et al. Abelian varieties over finite fields , 1969 .
[7] H. Niederreiter,et al. Towers of Global Function Fields with Asymptotically Many Rational Places and an Improvement on the Gilbert ‐ Varshamov Bound , 1998 .
[8] H. Niederreiter. Nets, (t, S)-Sequences, and Algebraic Curves Over Finite Fields With Many Rational Points , 1998 .
[9] M. Tsfasman,et al. Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .
[10] Kwok-Yan Lam,et al. Constructions of Algebraic-Geometry Codes , 1999, IEEE Trans. Inf. Theory.
[11] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[12] L. Welch,et al. Improved geometric Goppa codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.