Proximal methods for a class of bilevel monotone equilibrium problems

We consider a bilevel problem involving two monotone equilibrium bifunctions and we show that this problem can be solved by a simple proximal method. Under mild conditions, the weak convergence of the sequences generated by the algorithm is obtained. Using this result we obtain corollaries which improve several corresponding results in this field.

[1]  Wataru Takahashi,et al.  Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces , 2007 .

[2]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[3]  A. Moudafi Proximal point algorithm extended to equilibrium problems , 1999 .

[4]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[5]  T. D. Quoc,et al.  Extragradient algorithms extended to equilibrium problems , 2008 .

[6]  Giuseppe Marino,et al.  A general iterative method for nonexpansive mappings in Hilbert spaces , 2006 .

[7]  A General Iterative Method for Nonexpansive Mappings , 2007 .

[8]  Xie Ping Ding,et al.  Existence and iterative algorithm of solutions for a class of bilevel generalized mixed equilibrium problems in Banach spaces , 2012, J. Glob. Optim..

[9]  I. Konnov Application of the Proximal Point Method to Nonmonotone Equilibrium Problems , 2003 .

[10]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[11]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[12]  G. Mastroeni On Auxiliary Principle for Equilibrium Problems , 2003 .

[13]  Jean-Jacques Strodiot,et al.  A bundle method for solving equilibrium problems , 2009, Math. Program..

[14]  Z. Chbani,et al.  Equilibrium Problems with Generalized Monotone Bifunctions and Applications to Variational Inequalities , 2000 .

[15]  Mikhail Solodov,et al.  An Explicit Descent Method for Bilevel Convex Optimization , 2006 .

[16]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..

[17]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[18]  A. Moudafi,et al.  Proximal and Dynamical Approaches to Equilibrium Problems , 1999 .

[19]  Benar Fux Svaiter,et al.  Error bounds for proximal point subproblems and associated inexact proximal point algorithms , 2000, Math. Program..

[20]  Xie Ping Ding,et al.  Existence and algorithms for bilevel generalized mixed equilibrium problems in Banach spaces , 2012, J. Glob. Optim..

[21]  Alexandre Cabot,et al.  Proximal Point Algorithm Controlled by a Slowly Vanishing Term: Applications to Hierarchical Minimization , 2005, SIAM J. Optim..