PICARD SOL mission, a ground-based facility for long-term solar radius measurement

For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d’Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun’s interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth’s climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d’Images SOLaires Franco-Alg´erien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.

[1]  Marcelo Emilio,et al.  On the Constancy of the Solar Diameter. II. , 2000 .

[2]  Gary A. Chapman,et al.  On the Variability of the Apparent Solar Radius , 2008 .

[3]  Steven Dewitte,et al.  Simultaneous measurement of the total solar irradiance and solar diameter by the PICARD mission , 2006 .

[4]  R. K. Ulrich,et al.  Solar-cycle dependence of the Sun's apparent radius in the neutral iron spectral line at 525 nm , 1995, Nature.

[5]  M. Emilio,et al.  Solar diameter measurements at São Paulo Observatory , 2005 .

[6]  Leslie V. Morrison,et al.  The constancy of the solar diameter over the past 250 years , 1980, Nature.

[7]  Jeffrey R. Kuhn,et al.  ON THE CONSTANCY OF THE SOLAR RADIUS. III. , 2010 .

[8]  Gérard Thuillier,et al.  Past, present and future measurements of the solar diameter , 2005 .

[9]  David W. Dunham,et al.  Solar Radius Variations Determined from Observations of Four Eclipses , 1980 .

[10]  H. Neckel,et al.  Analytical Reference Functions F(λ) for the Sun's Limb Darkening and Its Absolute Continuum Intensities (λλ 300 to 1100 m) , 2005 .

[11]  M. Meftah,et al.  Ground-based solar astrometric measurements during the PICARD mission , 2011, Remote Sensing.

[12]  André Danjon,et al.  Astronomie générale : astronomie sphérique et éléments de mécanique céleste , 1952 .

[13]  M. Haberreiter,et al.  The Shape of the Solar Limb: Models and Observations , 2011 .

[14]  P. Delache,et al.  Panel discussion on Solar diameter variations , 1994 .

[15]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[16]  Axel D. Wittmann,et al.  Detection of a significant change in the solar diameter , 1993 .

[17]  B. Caccin,et al.  High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment , 2006 .

[18]  Mustapha Meftah,et al.  The space instrument SODISM and the ground instrument SODISM II , 2010, Astronomical Telescopes + Instrumentation.

[19]  C. Delmas,et al.  SHORT vs LONG TIME SERIES : EXAMPLE OF THE SOLAR DIAMETER , 2002 .

[20]  F. Noël,et al.  Solar cycle dependence of the apparent radius of the Sun , 2004 .

[21]  R. Gilliland,et al.  Solar radius variations over the past 265 years , 1981 .

[22]  D. Hestroffer,et al.  Wavelength dependency of the Solar limb darkening , 1998 .

[23]  Julien Borgnino,et al.  Error due to atmospheric turbulence effects on solar diameter measurements performed with an astrolabe , 1999 .

[24]  O. Golbasi,et al.  Measurements of the Solar Radius in Antalya between 2001–2003 , 2005 .

[25]  H. M. Antia Does the Sun Shrink with Increasing Magnetic Activity , 2003 .

[26]  Frédéric Morand,et al.  Mesures du rayon solaire avec l'instrument DORAYSOL (1999–2006) sur le site de Calern (observatoire de la Côte d'Azur) , 2010 .

[27]  M. L. Sveshnikov,et al.  Solar-radius variations from transits of Mercury across the solar disk , 2002 .

[28]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[29]  A. Irbah,et al.  Measurements and variations of the solar diameter , 1996 .

[30]  Robert F. Stein,et al.  Solar Surface Convection , 2009, Living reviews in solar physics.

[31]  Mustapha Meftah,et al.  The solar seeing monitor MISOLFA: presentation and first results , 2010, Astronomical Telescopes + Instrumentation.

[32]  Abdanour Irbah,et al.  Solar radius measurements with the SODISM instrument : methods and algorithm developments for the PICARD Payload Data Center , 2010 .

[33]  R. I. Bush,et al.  On the Constancy of the Solar Diameter , 2004 .

[34]  M. Haberreiter,et al.  NLTE solar irradiance modeling with the COSI code , 2010, 1004.3048.

[35]  Paul Murdin Observatoire de la Cte d'Azur , 2000 .

[36]  D. Loranz,et al.  GAIN CALIBRATING NONUNIFORM IMAGE-ARRAY DATA USING ONLY THE IMAGE DATA , 1991 .

[37]  I. Shapiro,et al.  Is the Sun Shrinking? , 1980, Science.