Phase anomalies in Talbot light carpets of self-images.

An interesting feature of light fields is a phase anomaly, which occurs on the optical axis when light is converging as in a focal spot. Since in Talbot images the light is periodically confined in both transverse and axial directions, it remains an open question whether at all and to which extent the phase in the Talbot images sustains an analogous phase anomaly. Here, we investigate experimentally and theoretically the anomalous phase behavior of Talbot images that emerge from a 1D amplitude grating with a period only slightly larger than the illumination wavelength. Talbot light carpets are observed close to the grating. We concisely show that the phase in each of the Talbot images possesses an anomalous axial shift. We show that this phase shift is analogous to a Gouy phase of a converging wave and occurs due to the periodic light confinement caused by the interference of various diffraction orders. Longitudinal-differential interferometry is used to directly demonstrate the axial phase shifts by comparing Talbot images phase maps to a plane wave. Supporting simulations based on rigorous diffraction theory are used to explore the effect numerically. Numerical and experimental results are in excellent agreement. We discover that the phase anomaly, i.e., the difference of the phase of the field behind the grating to the phase of a referential plane wave, is an increasing function with respect to the propagation distance. We also observe within one Talbot length an irregular wavefront spacing that causes a deviation from the linear slope of the phase anomaly. We complement our work by providing an analytical model that explains these features of the axial phase shift.

[1]  A. Cronin,et al.  An electron Talbot interferometer , 2008, 0812.4566.

[2]  A. Rohrbach,et al.  Tuning the detection sensitivity: a model for axial backfocal plane interferometric tracking. , 2012, Optics letters.

[3]  Q. Zhan,et al.  The Gouy phase shift of the highly focused radially polarized beam , 2007 .

[4]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[5]  Chuan-fu Cheng,et al.  Quasi-Talbot effect of the high-density grating in near field. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  P Cloetens,et al.  Fractional Talbot imaging of phase gratings with hard x rays. , 1997, Optics letters.

[7]  Chao Zhang,et al.  Perfect quasi-phase matching for the third-harmonic generation using focused Gaussian beams. , 2008, Optics letters.

[8]  Romain Quidant,et al.  Local observation of plasmon focusingin Talbot carpets. , 2009, Optics express.

[9]  Andrzej Kolodziejczyk Realization of Fourier Images without Using a Lens by Sampling the Optical Object , 1985 .

[10]  B. C. Daly,et al.  Gouy phase shift of single-cycle picosecond acoustic pulses , 2002 .

[11]  A W Lohmann,et al.  About periodicities in 3-D wavefields. , 1989, Applied optics.

[12]  G. Brand A New Millimeter Wave Geometric Phase Demonstration , 2000 .

[13]  Emil Wolf,et al.  Wave-front spacing in the focal region of high-numerical-aperture systems. , 2005, Optics letters.

[14]  James R. Leger,et al.  Coherent addition of AlGaAs lasers using microlenses and diffractive coupling , 1988 .

[15]  R. Gadonas,et al.  Self-action of Bessel beam in nonlinear medium , 2001 .

[16]  P. Robinson,et al.  The gouy phase shift as a geometrical quantum effect , 1996 .

[17]  H. Herzig,et al.  Gouy phase anomaly in photonic nanojets , 2011 .

[18]  Myun-Sik Kim,et al.  Small-size microlens characterization by multiwavelength high-resolution interference microscopy. , 2010, Optics express.

[19]  S. Habraken,et al.  Geometric phases in astigmatic optical modes of arbitrary order , 2009, 0912.1732.

[20]  Xiang Zhang,et al.  Analysis of Gouy phase shift for optimizing terahertz air-biased-coherent-detection , 2012 .

[21]  A. W. Lohmann,et al.  Spatial Periodicities in Partially Coherent Fields , 1983 .

[22]  Myun-Sik Kim,et al.  Longitudinal-differential interferometry: direct imaging of axial superluminal phase propagation. , 2012, Optics letters.

[23]  E. Wolf,et al.  The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields , 2010 .

[25]  H. Winful,et al.  Physical origin of the Gouy phase shift. , 2001, Optics letters.

[26]  J. T. Foley,et al.  On the wavefront spacing of focused, radially polarized beams. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Irene Marzoli,et al.  Quantum carpets, carpets of light , 2001 .

[28]  R. Morita,et al.  Direct observation of Gouy phase shift in a propagating optical vortex. , 2006, Optics express.

[29]  O. Bryngdahl Image formation using self-imaging techniques* , 1973 .

[30]  W. Talbot Facts relating to optical science , 1836 .

[31]  Robert W. Boyd,et al.  Intuitive explanation of the phase anomaly of focused light beams , 1980 .

[32]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[33]  Marc Brunel,et al.  Direct measurement of the central fringe velocity in Young-type experiments , 2002 .

[34]  R. Edgar The Fresnel Diffraction Images of Periodic Structures , 1969 .

[35]  Suman Mukherjee,et al.  Application of terahertz Gouy phase shift from curved surfaces for estimation of crop yield. , 2009, Applied optics.

[36]  C. David,et al.  High-order Talbot fringes for atomic matter waves. , 1997, Optics letters.

[37]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[38]  D. Fischer,et al.  Generalized Gouy phase for focused partially coherent light and its implications for interferometry. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  Mario Martinelli,et al.  Gouy phase shift in nondiffracting Bessel beams. , 2010, Optics express.

[40]  M. V. Berry,et al.  Integer, fractional and fractal Talbot effects , 1996 .

[41]  Q. Zhan Second-order tilted wave interpretation of the Gouy phase shift under high numerical aperture uniform illumination , 2004 .

[42]  Melania Paturzo,et al.  Mid-infrared tunable two-dimensional Talbot array illuminator , 2009 .

[43]  Nikolay I Zheludev,et al.  The plasmon Talbot effect. , 2007, Optics express.

[44]  Changhe Zhou,et al.  Talbot effect of a grating with different kinds of flaws. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  D Subbarao,et al.  Topological phase in Gaussian beam optics. , 1995, Optics letters.

[46]  A. Agrawal,et al.  Direct measurement of the Gouy phase shift for surface plasmon-polaritons. , 2007, Optics express.

[47]  T. Visser,et al.  The Gouy phase of Airy beams. , 2011, Optics letters.

[48]  Bahaa E. A. Saleh,et al.  Second- and third-harmonic generation with vector Gaussian beams , 2006 .

[49]  J. C. Bhattacharya Measurement of the refractive index using the Talbot effect and a moire technique. , 1989, Applied optics.

[50]  H. Herzig,et al.  Talbot Images of Wavelength-scale Amplitude Gratings , 2022 .

[51]  M. Nemes,et al.  Experimental proposal for measuring the Gouy phase of matter waves , 2010, 1012.3910.

[52]  Anna Khoroshun,et al.  Observation of superluminal wave-front propagation at the shadow area behind an opaque disk. , 2007 .

[53]  J. Turunen,et al.  Electromagnetic theory of Talbot imaging , 1993 .

[54]  L. Sanchez-Brea,et al.  Effect of Aberrations on the Self-Imaging Phenomenon , 2011, Journal of Lightwave Technology.

[55]  John M. Tamkin,et al.  Observation of the Gouy phase anomaly in astigmatic beams. , 2012, Applied optics.

[56]  Myun-Sik Kim,et al.  Engineering photonic nanojets. , 2011, Optics express.

[57]  James R. Leger,et al.  Lateral mode control of an AlGaAs laser array in a Talbot cavity , 1989 .

[58]  A. B. Ruffin,et al.  Direct observation of the Gouy phase shift with single-cycle terahertz pulses , 1999 .

[59]  J. Xiong,et al.  Experimental observation of quantum Talbot effects , 2012, 2012 Asia Communications and Photonics Conference (ACP).

[60]  U. Zeitner,et al.  Advanced mask aligner lithography: fabrication of periodic patterns using pinhole array mask and Talbot effect. , 2010, Optics express.

[61]  Lord Rayleigh F.R.S. XXV. On copying diffraction-gratings, and on some phenomena connected therewith , 1881 .

[62]  Dario Ambrosini,et al.  Displacement measurement using the Talbot effect with a Ronchi grating , 2002 .

[63]  Nikolay Zheludev,et al.  Focusing of light by a nanohole array , 2007 .

[64]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.

[65]  Hammond,et al.  Near-field imaging of atom diffraction gratings: The atomic Talbot effect. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[66]  M. Wegener,et al.  Thin-film polarizer based on a one-dimensional–three-dimensional–one-dimensional photonic crystal heterostructure , 2007 .

[67]  J. Chen,et al.  Angular diffraction of an optical vortex induced by the Gouy phase , 2012 .

[68]  J. Winthrop,et al.  Theory of Fresnel Images. I. Plane Periodic Objects in Monochromatic Light , 1965 .

[69]  E. Lau Beugungserscheinungen an Doppelrastern , 1948 .

[70]  Multiple incoherent 2D optical correlator , 1991 .

[71]  A. B. Ruffin,et al.  DIRECT OBSERVATION OF THE GOUY PHASE SHIFT WITH SINGLE-CYCLE TERAHERTZ PULSES , 1999 .

[72]  N. Ghosh,et al.  Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry. , 2012, Optics express.

[73]  Mukunda,et al.  Bargmann invariant and the geometry of the Güoy effect. , 1993, Physical review letters.