Call detail record-based traffic density analysis using global K-means clustering

With the expanding number of vehicles on the road is creating substantial traffic that is hard to control and maintain safety, particularly in extensive urban areas. To estimate the traffic density several works were carried out in the past. However, they are inappropriate and expensive due to the dynamics of traffic flow. Here we intend to use CDR to distinguish the traffic density location and to track the location of the mobile user. In our proposed method to discover the density scope of the traffic, we are using two algorithms called k-means clustering and the k nearest neighbour classification algorithms. The proposed technique will be tested among five different locations during the weekdays and the weekends, which show the noteworthiness of the proposed algorithm and show that our technique has high accuracy.