Volatility Forecasting Using a Hybrid GJR-GARCH Neural Network Model

[1]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[2]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[3]  K. French,et al.  Expected stock returns and volatility , 1987 .

[4]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[5]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[6]  J. Zakoian Threshold heteroskedastic models , 1994 .

[7]  Ludger Hentschel All in the family Nesting symmetric and asymmetric GARCH models , 1995 .

[8]  R. Donaldson,et al.  An artificial neural network-GARCH model for international stock return volatility , 1997 .

[9]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[10]  Valentina Corradi,et al.  Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries , 2005 .

[11]  Haim Shalit,et al.  Estimating stock market volatility using asymmetric GARCH models , 2008 .

[12]  Melike Bildirici,et al.  Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange , 2009, Expert Syst. Appl..

[13]  Yi-Hsien Wang,et al.  Nonlinear neural network forecasting model for stock index option price: Hybrid GJR-GARCH approach , 2009, Expert Syst. Appl..

[14]  C. Brownlees,et al.  A Practical Guide to Volatility Forecasting through Calm and Storm , 2011 .

[15]  Anupam Shukla,et al.  Financial Time Series Volatility Forecast Using Evolutionary Hybrid Artificial Neural Network , 2011 .

[16]  C. J. Franco,et al.  USING A DYNAMIC ARTIFICIAL NEURAL NETWORK FOR FORECASTING THE VOLATILITY OF A FINANCIAL TIME SERIES , 2013 .

[17]  Werner Kristjanpoller,et al.  Volatility forecast using hybrid Neural Network models , 2014, Expert Syst. Appl..