Compact Dual-Band Textile PIFA for 433-MHz/2.4-GHz ISM Bands

A textile planar inverted-F antenna (PIFA) is proposed. By co-designing the PIFA antenna and the ground plane, a wide matching bandwidth is achieved around 433 MHz for a relatively small electrical size (0.202 × 0.115 × 0.01 <italic>λ</italic><sub>0</sub><sup>3</sup>). A slot within the PIFA patch enables the 2.4-GHz operating band. The measured bandwidths are 35 and 309 MHz in the lower and upper bands, respectively. The corresponding radiation efficiencies are 48% and 64%. The analysis of the effect of bending and the on-body characterization show the robust performance of the antenna.

[1]  Guy A. E. Vandenbosch,et al.  Dual-Band Textile MIMO Antenna Based on Substrate-Integrated Waveguide (SIW) Technology , 2015, IEEE Transactions on Antennas and Propagation.

[2]  Anja K. Skrivervik,et al.  Diminishing SAR for Wearable UHF Antennas , 2015, IEEE Antennas and Wireless Propagation Letters.

[3]  Zhijun Zhang,et al.  A Dual-Resonant Shorted Patch Antenna for Wearable Application in 430 MHz Band , 2013, IEEE Transactions on Antennas and Propagation.

[4]  G. Vandenbosch,et al.  Compact All-Textile Dual-Band Antenna Loaded With Metamaterial-Inspired Structure , 2015, IEEE Antennas and Wireless Propagation Letters.

[5]  R. Langley,et al.  Dual-Band Wearable Textile Antenna on an EBG Substrate , 2009, IEEE Transactions on Antennas and Propagation.

[6]  Dominique Schreurs,et al.  Specific Absorption Rate (SAR) Evaluation of Textile Antennas , 2015, IEEE Antennas and Propagation Magazine.

[7]  Douglas H. Werner,et al.  A Compact, Low-Profile Metasurface-Enabled Antenna for Wearable Medical Body-Area Network Devices , 2014, IEEE Transactions on Antennas and Propagation.

[8]  P. J. Soh,et al.  Design of a Broadband All-Textile Slotted PIFA , 2012, IEEE Transactions on Antennas and Propagation.

[9]  Buon Kiong Lau,et al.  Design of Orthogonal MIMO Handset Antennas Based on Characteristic Mode Manipulation at Frequency Bands Below 1 GHz , 2014, IEEE Transactions on Antennas and Propagation.

[10]  G. A. E. Vandenbosch,et al.  Measurement and Performance of Textile Antenna Efficiency on a Human Body in a Reverberation Chamber , 2013, IEEE Transactions on Antennas and Propagation.

[11]  Guy A. E. Vandenbosch,et al.  Wearable dual-band composite right/ left-handed waveguide textile antenna for WLAN applications , 2014 .

[12]  Guy A. E. Vandenbosch,et al.  Radiation Pattern-Reconfigurable Wearable Antenna Based on Metamaterial Structure , 2016, IEEE Antennas and Wireless Propagation Letters.

[13]  Guy A. E. Vandenbosch,et al.  Wearable dual-band Sierpinski fractal PIFA using conductive fabric , 2011 .

[14]  H. Rogier,et al.  Compact Half Diamond Dual-Band Textile HMSIW On-Body Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[15]  Guy A. E. Vandenbosch,et al.  Low-Profile Dual-Band Textile Antenna With Artificial Magnetic Conductor Plane , 2014, IEEE Transactions on Antennas and Propagation.

[16]  M. Ribo,et al.  Multiband Handset Antenna Combining a PIFA, Slots, and Ground Plane Modes , 2009, IEEE Transactions on Antennas and Propagation.

[17]  Jennifer T. Bernhard,et al.  Design Guidelines Using Characteristic Mode Theory for Improving the Bandwidth of PIFAs , 2015, IEEE Transactions on Antennas and Propagation.

[18]  M. Cabedo-Fabres,et al.  The Theory of Characteristic Modes Revisited: A Contribution to the Design of Antennas for Modern Applications , 2007, IEEE Antennas and Propagation Magazine.