Generalized Alikhanov's approximation and numerical treatment of generalized fractional sub-diffusion equations

[1]  Khaled Omrani,et al.  A new conservative finite difference scheme for the Rosenau equation , 2008, Appl. Math. Comput..

[2]  Om P. Agrawal,et al.  A general solution for a fourth-order fractional diffusion–wave equation defined in a bounded domain , 2001 .

[3]  Patricia J. Y. Wong,et al.  A higher order non-polynomial spline method for fractional sub-diffusion problems , 2017, J. Comput. Phys..

[4]  Mostafa Abbaszadeh,et al.  A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, Comput. Math. Appl..

[5]  Zhi-Zhong Sun,et al.  The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain , 2013, J. Comput. Phys..

[6]  Xuhao Li,et al.  A gWSGL numerical scheme for generalized fractional sub-diffusion problems , 2020, Commun. Nonlinear Sci. Numer. Simul..

[7]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[8]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[9]  Anatoly A. Alikhanov,et al.  Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations , 2020, Comput. Math. Appl..

[10]  Om P. Agrawal,et al.  Generalized Multiparameters Fractional Variational Calculus , 2012 .

[11]  Patricia J. Y. Wong,et al.  Numerical solutions of fourth‐order fractional sub‐diffusion problems via parametric quintic spline , 2019, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[12]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[13]  Juan J. Trujillo,et al.  Caputo-Type Modification of the Erdélyi-Kober Fractional Derivative , 2007 .

[14]  Qinwu Xu,et al.  Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient , 2014 .

[15]  Fawang Liu,et al.  Numerical simulation for the three-dimension fractional sub-diffusion equation☆ , 2014 .

[16]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[17]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[18]  Patricia J. Y. Wong,et al.  A higher order numerical scheme for generalized fractional diffusion equations , 2020, International Journal for Numerical Methods in Fluids.

[19]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[20]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[21]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[22]  Yufeng Xu,et al.  Models and numerical schemes for generalized van der Pol equations , 2013, Commun. Nonlinear Sci. Numer. Simul..

[23]  Zhi-Zhong Sun,et al.  The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations , 2017, J. Sci. Comput..

[24]  Da Xu,et al.  Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation , 2014, J. Comput. Phys..

[25]  O. Agrawal,et al.  Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation , 2013 .

[26]  Cui-Cui Ji,et al.  A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation , 2014, Journal of Scientific Computing.

[27]  Yufeng Xu,et al.  Numerical and analytical solutions of new generalized fractional diffusion equation , 2013, Comput. Math. Appl..

[28]  Yufeng Xu,et al.  Existence results for a class of generalized fractional boundary value problems , 2017 .

[29]  Patricia J. Y. Wong,et al.  Non-polynomial spline approach in two-dimensional fractional sub-diffusion problems , 2019, Appl. Math. Comput..

[30]  Xuhao Li,et al.  An efficient nonpolynomial spline method for distributed order fractional subdiffusion equations , 2018 .

[31]  Patricia J. Y. Wong,et al.  A new approximation for the generalized fractional derivative and its application to generalized fractional diffusion equation , 2020, Numerical Methods for Partial Differential Equations.

[32]  O. Agrawal Some generalized fractional calculus operators and their applications in integral equations , 2012 .