The kinetic relation for twin wall motion in NiMnGa

Abstract A complete description of magnetically induced strains in ferromagnetic shape memory alloys (FSMAs) requires knowledge of the constitutive equation describing twin wall motion, commonly referred to as the kinetic relation. Here we present a unique experimental setup that allows for direct measurement of individual twin wall velocities as a function of a magnetically induced driving force in a NiMnGa FSMA, i.e., the kinetic relation. Our results demonstrate the validity of a general kinetic law that is typical of a viscous interface motion in a periodic potential. Values of basic material properties that govern twin wall motion, such as the Peierls energy barrier and the crystal viscosity, are extracted, and a simple model suggests that the viscosity measured in NiMnGa represents the magnitude of this property in other non-ferromagnetic shape memory alloys.

[1]  Robert C. O'Handley,et al.  Model for strain and magnetization in magnetic shape-memory alloys , 1998 .

[2]  A. A. Likhachev,et al.  Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy , 2000 .

[3]  R. James,et al.  Breaching the work output limitation of ferromagnetic shape memory alloys , 2008 .

[4]  N. Glavatska,et al.  Statistical model of magnetostrain effect in martensite , 2003 .

[5]  J. Shieh,et al.  A study of electromechanical switching in ferroelectric single crystals , 2008 .

[6]  G. Kostorz,et al.  Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields , 2002 .

[7]  G. Weinreich,et al.  Mechanism for the Sidewise Motion of 180° Domain Walls in Barium Titanate , 1960 .

[8]  Doron Shilo,et al.  Ferromagnetic shape memory flapper , 2009 .

[9]  Samuel M. Allen,et al.  6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga , 2000 .

[10]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[11]  Srikanth Vedantam,et al.  A lattice-based model of the kinetics of twin boundary motion , 2003 .

[12]  Samuel M. Allen,et al.  Pulsed magnetic field-induced actuation of Ni–Mn–Ga single crystals , 2003 .

[13]  M. Hayashi Kinetics of Domain Wall Motion in Ferroelectric Switching. I. General Formulation , 1972 .

[14]  M. Wuttig,et al.  Intermartensitic transformation in a NiMnGa alloy , 2004 .

[15]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[16]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[17]  Kari Ullakko,et al.  Position dependent inductance based on magnetic shape memory materials , 2005 .

[18]  E. Faran,et al.  Twin motion faster than the speed of sound. , 2010, Physical review letters.

[19]  Christopher P. Henry,et al.  Dynamic actuation properties of Ni-Mn-Ga ferromagnetic shape memory alloys , 2002 .

[20]  Enric Pardo,et al.  Demagnetizing factors of rectangular prisms and ellipsoids , 2002 .

[21]  R. Harrison,et al.  The influence of transformation twins on the seismic-frequency elastic and anelastic properties of perovskite: dynamical mechanical analysis of single crystal LaAlO3 , 2002 .

[22]  Stefano Besseghini,et al.  Ferromagnetic shape memory alloys: Scientific and applied aspects , 2008 .

[23]  R. Flippen Domain wall dynamics in ferroelectric/ferroelastic molybdates , 1975 .

[24]  D. Shilo,et al.  The Mechanical Response of Shape Memory Alloys Under a Rapid Heating Pulse , 2010 .

[25]  A. A. Likhachev,et al.  Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase , 2002 .

[26]  K. Bhattacharya,et al.  A model for large electrostrictive actuation in ferroelectric single crystals , 2007 .

[27]  Richard D. James,et al.  Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy , 1996 .

[28]  L. Hirsinger,et al.  Stress-induced phase transformations in Ni–Mn–Ga alloys: experiments and modelling , 2004 .

[29]  Samuel M. Allen,et al.  Nonuniform twin-boundary motion in Ni–Mn–Ga single crystals , 2004 .

[30]  L. Truskinovsky,et al.  Peierls-Nabarro landscape for martensitic phase transitions , 2003 .

[31]  Richard D. James,et al.  Large field-induced strains in ferromagnetic shape memory materials , 1999 .

[32]  G. Ravichandran,et al.  Large electrostrictive actuation of barium titanate single crystals , 2004 .

[33]  H. Sehitoglu,et al.  Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation , 2007 .

[34]  James K. Knowles,et al.  Evolution of Phase Transitions: A Continuum Theory , 2006 .

[35]  On the kinetics of an austenite → martensite phase transformation induced by impact in a CuAlNi shape-memory alloy , 1997 .

[36]  L. Schultz,et al.  Direct observation of AC field-induced twin-boundary dynamics in bulk NiMnGa , 2008 .

[37]  N. Sarawate Characterization and Modeling of the Ferromagnetic Shape Memory Alloy Ni-Mn-Ga for Sensing and Actuation , 2008 .

[38]  I. Aaltio,et al.  Twin boundary nucleation and motion in Ni-Mn-Ga magnetic shape memory material with a low twinning stress , 2010 .

[39]  R. O'handley,et al.  Ferromagnetic shape memory alloys: A theoretical approach , 2007 .

[40]  F. Hildebrand,et al.  An atomistic investigation of the kinetics of detwinning , 2008 .